Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Share

\frac{\left(x^{2}-x-12\right)\left(x^{2}-2x-8\right)}{\left(x^{2}-3x-10\right)\left(x^{2}-9x+20\right)}\times \frac{x-5}{x+3}
Divide \frac{x^{2}-x-12}{x^{2}-3x-10} by \frac{x^{2}-9x+20}{x^{2}-2x-8} by multiplying \frac{x^{2}-x-12}{x^{2}-3x-10} by the reciprocal of \frac{x^{2}-9x+20}{x^{2}-2x-8}.
\frac{\left(x+2\right)\left(x+3\right)\left(x-4\right)^{2}}{\left(x-4\right)\left(x+2\right)\left(x-5\right)^{2}}\times \frac{x-5}{x+3}
Factor the expressions that are not already factored in \frac{\left(x^{2}-x-12\right)\left(x^{2}-2x-8\right)}{\left(x^{2}-3x-10\right)\left(x^{2}-9x+20\right)}.
\frac{\left(x-4\right)\left(x+3\right)}{\left(x-5\right)^{2}}\times \frac{x-5}{x+3}
Cancel out \left(x-4\right)\left(x+2\right) in both numerator and denominator.
\frac{\left(x-4\right)\left(x+3\right)\left(x-5\right)}{\left(x-5\right)^{2}\left(x+3\right)}
Multiply \frac{\left(x-4\right)\left(x+3\right)}{\left(x-5\right)^{2}} times \frac{x-5}{x+3} by multiplying numerator times numerator and denominator times denominator.
\frac{x-4}{x-5}
Cancel out \left(x-5\right)\left(x+3\right) in both numerator and denominator.
\frac{\left(x^{2}-x-12\right)\left(x^{2}-2x-8\right)}{\left(x^{2}-3x-10\right)\left(x^{2}-9x+20\right)}\times \frac{x-5}{x+3}
Divide \frac{x^{2}-x-12}{x^{2}-3x-10} by \frac{x^{2}-9x+20}{x^{2}-2x-8} by multiplying \frac{x^{2}-x-12}{x^{2}-3x-10} by the reciprocal of \frac{x^{2}-9x+20}{x^{2}-2x-8}.
\frac{\left(x+2\right)\left(x+3\right)\left(x-4\right)^{2}}{\left(x-4\right)\left(x+2\right)\left(x-5\right)^{2}}\times \frac{x-5}{x+3}
Factor the expressions that are not already factored in \frac{\left(x^{2}-x-12\right)\left(x^{2}-2x-8\right)}{\left(x^{2}-3x-10\right)\left(x^{2}-9x+20\right)}.
\frac{\left(x-4\right)\left(x+3\right)}{\left(x-5\right)^{2}}\times \frac{x-5}{x+3}
Cancel out \left(x-4\right)\left(x+2\right) in both numerator and denominator.
\frac{\left(x-4\right)\left(x+3\right)\left(x-5\right)}{\left(x-5\right)^{2}\left(x+3\right)}
Multiply \frac{\left(x-4\right)\left(x+3\right)}{\left(x-5\right)^{2}} times \frac{x-5}{x+3} by multiplying numerator times numerator and denominator times denominator.
\frac{x-4}{x-5}
Cancel out \left(x-5\right)\left(x+3\right) in both numerator and denominator.