Evaluate
\frac{3x^{4}-9x^{3}-35x^{2}+81x+152}{\left(x-5\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)}
Expand
\frac{3x^{4}-9x^{3}-35x^{2}+81x+152}{\left(x-1\right)\left(x+2\right)\left(x^{2}-2x-15\right)}
Graph
Share
Copied to clipboard
\frac{x^{2}-x-12}{\left(x-1\right)\left(x+2\right)}+\frac{x^{2}-6x+8}{\left(x-5\right)\left(x+2\right)}+\frac{x^{2}-3x+2}{x^{2}-2x-15}
Factor x^{2}+x-2. Factor x^{2}-3x-10.
\frac{\left(x^{2}-x-12\right)\left(x-5\right)}{\left(x-5\right)\left(x-1\right)\left(x+2\right)}+\frac{\left(x^{2}-6x+8\right)\left(x-1\right)}{\left(x-5\right)\left(x-1\right)\left(x+2\right)}+\frac{x^{2}-3x+2}{x^{2}-2x-15}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+2\right) and \left(x-5\right)\left(x+2\right) is \left(x-5\right)\left(x-1\right)\left(x+2\right). Multiply \frac{x^{2}-x-12}{\left(x-1\right)\left(x+2\right)} times \frac{x-5}{x-5}. Multiply \frac{x^{2}-6x+8}{\left(x-5\right)\left(x+2\right)} times \frac{x-1}{x-1}.
\frac{\left(x^{2}-x-12\right)\left(x-5\right)+\left(x^{2}-6x+8\right)\left(x-1\right)}{\left(x-5\right)\left(x-1\right)\left(x+2\right)}+\frac{x^{2}-3x+2}{x^{2}-2x-15}
Since \frac{\left(x^{2}-x-12\right)\left(x-5\right)}{\left(x-5\right)\left(x-1\right)\left(x+2\right)} and \frac{\left(x^{2}-6x+8\right)\left(x-1\right)}{\left(x-5\right)\left(x-1\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{x^{3}-5x^{2}-x^{2}+5x-12x+60+x^{3}-x^{2}-6x^{2}+6x+8x-8}{\left(x-5\right)\left(x-1\right)\left(x+2\right)}+\frac{x^{2}-3x+2}{x^{2}-2x-15}
Do the multiplications in \left(x^{2}-x-12\right)\left(x-5\right)+\left(x^{2}-6x+8\right)\left(x-1\right).
\frac{2x^{3}-13x^{2}+7x+52}{\left(x-5\right)\left(x-1\right)\left(x+2\right)}+\frac{x^{2}-3x+2}{x^{2}-2x-15}
Combine like terms in x^{3}-5x^{2}-x^{2}+5x-12x+60+x^{3}-x^{2}-6x^{2}+6x+8x-8.
\frac{2x^{3}-13x^{2}+7x+52}{\left(x-5\right)\left(x-1\right)\left(x+2\right)}+\frac{x^{2}-3x+2}{\left(x-5\right)\left(x+3\right)}
Factor x^{2}-2x-15.
\frac{\left(2x^{3}-13x^{2}+7x+52\right)\left(x+3\right)}{\left(x-5\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)}+\frac{\left(x^{2}-3x+2\right)\left(x-1\right)\left(x+2\right)}{\left(x-5\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-5\right)\left(x-1\right)\left(x+2\right) and \left(x-5\right)\left(x+3\right) is \left(x-5\right)\left(x-1\right)\left(x+2\right)\left(x+3\right). Multiply \frac{2x^{3}-13x^{2}+7x+52}{\left(x-5\right)\left(x-1\right)\left(x+2\right)} times \frac{x+3}{x+3}. Multiply \frac{x^{2}-3x+2}{\left(x-5\right)\left(x+3\right)} times \frac{\left(x-1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}.
\frac{\left(2x^{3}-13x^{2}+7x+52\right)\left(x+3\right)+\left(x^{2}-3x+2\right)\left(x-1\right)\left(x+2\right)}{\left(x-5\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)}
Since \frac{\left(2x^{3}-13x^{2}+7x+52\right)\left(x+3\right)}{\left(x-5\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)} and \frac{\left(x^{2}-3x+2\right)\left(x-1\right)\left(x+2\right)}{\left(x-5\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{2x^{4}+6x^{3}-13x^{3}-39x^{2}+7x^{2}+21x+52x+156+x^{4}+x^{3}-2x^{2}-3x^{3}-3x^{2}+6x+2x^{2}+2x-4}{\left(x-5\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)}
Do the multiplications in \left(2x^{3}-13x^{2}+7x+52\right)\left(x+3\right)+\left(x^{2}-3x+2\right)\left(x-1\right)\left(x+2\right).
\frac{3x^{4}-9x^{3}-35x^{2}+81x+152}{\left(x-5\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)}
Combine like terms in 2x^{4}+6x^{3}-13x^{3}-39x^{2}+7x^{2}+21x+52x+156+x^{4}+x^{3}-2x^{2}-3x^{3}-3x^{2}+6x+2x^{2}+2x-4.
\frac{3x^{4}-9x^{3}-35x^{2}+81x+152}{x^{4}-x^{3}-19x^{2}-11x+30}
Expand \left(x-5\right)\left(x-1\right)\left(x+2\right)\left(x+3\right).
\frac{x^{2}-x-12}{\left(x-1\right)\left(x+2\right)}+\frac{x^{2}-6x+8}{\left(x-5\right)\left(x+2\right)}+\frac{x^{2}-3x+2}{x^{2}-2x-15}
Factor x^{2}+x-2. Factor x^{2}-3x-10.
\frac{\left(x^{2}-x-12\right)\left(x-5\right)}{\left(x-5\right)\left(x-1\right)\left(x+2\right)}+\frac{\left(x^{2}-6x+8\right)\left(x-1\right)}{\left(x-5\right)\left(x-1\right)\left(x+2\right)}+\frac{x^{2}-3x+2}{x^{2}-2x-15}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+2\right) and \left(x-5\right)\left(x+2\right) is \left(x-5\right)\left(x-1\right)\left(x+2\right). Multiply \frac{x^{2}-x-12}{\left(x-1\right)\left(x+2\right)} times \frac{x-5}{x-5}. Multiply \frac{x^{2}-6x+8}{\left(x-5\right)\left(x+2\right)} times \frac{x-1}{x-1}.
\frac{\left(x^{2}-x-12\right)\left(x-5\right)+\left(x^{2}-6x+8\right)\left(x-1\right)}{\left(x-5\right)\left(x-1\right)\left(x+2\right)}+\frac{x^{2}-3x+2}{x^{2}-2x-15}
Since \frac{\left(x^{2}-x-12\right)\left(x-5\right)}{\left(x-5\right)\left(x-1\right)\left(x+2\right)} and \frac{\left(x^{2}-6x+8\right)\left(x-1\right)}{\left(x-5\right)\left(x-1\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{x^{3}-5x^{2}-x^{2}+5x-12x+60+x^{3}-x^{2}-6x^{2}+6x+8x-8}{\left(x-5\right)\left(x-1\right)\left(x+2\right)}+\frac{x^{2}-3x+2}{x^{2}-2x-15}
Do the multiplications in \left(x^{2}-x-12\right)\left(x-5\right)+\left(x^{2}-6x+8\right)\left(x-1\right).
\frac{2x^{3}-13x^{2}+7x+52}{\left(x-5\right)\left(x-1\right)\left(x+2\right)}+\frac{x^{2}-3x+2}{x^{2}-2x-15}
Combine like terms in x^{3}-5x^{2}-x^{2}+5x-12x+60+x^{3}-x^{2}-6x^{2}+6x+8x-8.
\frac{2x^{3}-13x^{2}+7x+52}{\left(x-5\right)\left(x-1\right)\left(x+2\right)}+\frac{x^{2}-3x+2}{\left(x-5\right)\left(x+3\right)}
Factor x^{2}-2x-15.
\frac{\left(2x^{3}-13x^{2}+7x+52\right)\left(x+3\right)}{\left(x-5\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)}+\frac{\left(x^{2}-3x+2\right)\left(x-1\right)\left(x+2\right)}{\left(x-5\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-5\right)\left(x-1\right)\left(x+2\right) and \left(x-5\right)\left(x+3\right) is \left(x-5\right)\left(x-1\right)\left(x+2\right)\left(x+3\right). Multiply \frac{2x^{3}-13x^{2}+7x+52}{\left(x-5\right)\left(x-1\right)\left(x+2\right)} times \frac{x+3}{x+3}. Multiply \frac{x^{2}-3x+2}{\left(x-5\right)\left(x+3\right)} times \frac{\left(x-1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}.
\frac{\left(2x^{3}-13x^{2}+7x+52\right)\left(x+3\right)+\left(x^{2}-3x+2\right)\left(x-1\right)\left(x+2\right)}{\left(x-5\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)}
Since \frac{\left(2x^{3}-13x^{2}+7x+52\right)\left(x+3\right)}{\left(x-5\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)} and \frac{\left(x^{2}-3x+2\right)\left(x-1\right)\left(x+2\right)}{\left(x-5\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{2x^{4}+6x^{3}-13x^{3}-39x^{2}+7x^{2}+21x+52x+156+x^{4}+x^{3}-2x^{2}-3x^{3}-3x^{2}+6x+2x^{2}+2x-4}{\left(x-5\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)}
Do the multiplications in \left(2x^{3}-13x^{2}+7x+52\right)\left(x+3\right)+\left(x^{2}-3x+2\right)\left(x-1\right)\left(x+2\right).
\frac{3x^{4}-9x^{3}-35x^{2}+81x+152}{\left(x-5\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)}
Combine like terms in 2x^{4}+6x^{3}-13x^{3}-39x^{2}+7x^{2}+21x+52x+156+x^{4}+x^{3}-2x^{2}-3x^{3}-3x^{2}+6x+2x^{2}+2x-4.
\frac{3x^{4}-9x^{3}-35x^{2}+81x+152}{x^{4}-x^{3}-19x^{2}-11x+30}
Expand \left(x-5\right)\left(x-1\right)\left(x+2\right)\left(x+3\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}