Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x^{2}-x-12}{\left(x-1\right)\left(x+2\right)}+\frac{x^{2}-6x+8}{\left(x-5\right)\left(x+2\right)}+\frac{x^{2}-3x+2}{x^{2}-2x-15}
Factor x^{2}+x-2. Factor x^{2}-3x-10.
\frac{\left(x^{2}-x-12\right)\left(x-5\right)}{\left(x-5\right)\left(x-1\right)\left(x+2\right)}+\frac{\left(x^{2}-6x+8\right)\left(x-1\right)}{\left(x-5\right)\left(x-1\right)\left(x+2\right)}+\frac{x^{2}-3x+2}{x^{2}-2x-15}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+2\right) and \left(x-5\right)\left(x+2\right) is \left(x-5\right)\left(x-1\right)\left(x+2\right). Multiply \frac{x^{2}-x-12}{\left(x-1\right)\left(x+2\right)} times \frac{x-5}{x-5}. Multiply \frac{x^{2}-6x+8}{\left(x-5\right)\left(x+2\right)} times \frac{x-1}{x-1}.
\frac{\left(x^{2}-x-12\right)\left(x-5\right)+\left(x^{2}-6x+8\right)\left(x-1\right)}{\left(x-5\right)\left(x-1\right)\left(x+2\right)}+\frac{x^{2}-3x+2}{x^{2}-2x-15}
Since \frac{\left(x^{2}-x-12\right)\left(x-5\right)}{\left(x-5\right)\left(x-1\right)\left(x+2\right)} and \frac{\left(x^{2}-6x+8\right)\left(x-1\right)}{\left(x-5\right)\left(x-1\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{x^{3}-5x^{2}-x^{2}+5x-12x+60+x^{3}-x^{2}-6x^{2}+6x+8x-8}{\left(x-5\right)\left(x-1\right)\left(x+2\right)}+\frac{x^{2}-3x+2}{x^{2}-2x-15}
Do the multiplications in \left(x^{2}-x-12\right)\left(x-5\right)+\left(x^{2}-6x+8\right)\left(x-1\right).
\frac{2x^{3}-13x^{2}+7x+52}{\left(x-5\right)\left(x-1\right)\left(x+2\right)}+\frac{x^{2}-3x+2}{x^{2}-2x-15}
Combine like terms in x^{3}-5x^{2}-x^{2}+5x-12x+60+x^{3}-x^{2}-6x^{2}+6x+8x-8.
\frac{2x^{3}-13x^{2}+7x+52}{\left(x-5\right)\left(x-1\right)\left(x+2\right)}+\frac{x^{2}-3x+2}{\left(x-5\right)\left(x+3\right)}
Factor x^{2}-2x-15.
\frac{\left(2x^{3}-13x^{2}+7x+52\right)\left(x+3\right)}{\left(x-5\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)}+\frac{\left(x^{2}-3x+2\right)\left(x-1\right)\left(x+2\right)}{\left(x-5\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-5\right)\left(x-1\right)\left(x+2\right) and \left(x-5\right)\left(x+3\right) is \left(x-5\right)\left(x-1\right)\left(x+2\right)\left(x+3\right). Multiply \frac{2x^{3}-13x^{2}+7x+52}{\left(x-5\right)\left(x-1\right)\left(x+2\right)} times \frac{x+3}{x+3}. Multiply \frac{x^{2}-3x+2}{\left(x-5\right)\left(x+3\right)} times \frac{\left(x-1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}.
\frac{\left(2x^{3}-13x^{2}+7x+52\right)\left(x+3\right)+\left(x^{2}-3x+2\right)\left(x-1\right)\left(x+2\right)}{\left(x-5\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)}
Since \frac{\left(2x^{3}-13x^{2}+7x+52\right)\left(x+3\right)}{\left(x-5\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)} and \frac{\left(x^{2}-3x+2\right)\left(x-1\right)\left(x+2\right)}{\left(x-5\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{2x^{4}+6x^{3}-13x^{3}-39x^{2}+7x^{2}+21x+52x+156+x^{4}+x^{3}-2x^{2}-3x^{3}-3x^{2}+6x+2x^{2}+2x-4}{\left(x-5\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)}
Do the multiplications in \left(2x^{3}-13x^{2}+7x+52\right)\left(x+3\right)+\left(x^{2}-3x+2\right)\left(x-1\right)\left(x+2\right).
\frac{3x^{4}-9x^{3}-35x^{2}+81x+152}{\left(x-5\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)}
Combine like terms in 2x^{4}+6x^{3}-13x^{3}-39x^{2}+7x^{2}+21x+52x+156+x^{4}+x^{3}-2x^{2}-3x^{3}-3x^{2}+6x+2x^{2}+2x-4.
\frac{3x^{4}-9x^{3}-35x^{2}+81x+152}{x^{4}-x^{3}-19x^{2}-11x+30}
Expand \left(x-5\right)\left(x-1\right)\left(x+2\right)\left(x+3\right).
\frac{x^{2}-x-12}{\left(x-1\right)\left(x+2\right)}+\frac{x^{2}-6x+8}{\left(x-5\right)\left(x+2\right)}+\frac{x^{2}-3x+2}{x^{2}-2x-15}
Factor x^{2}+x-2. Factor x^{2}-3x-10.
\frac{\left(x^{2}-x-12\right)\left(x-5\right)}{\left(x-5\right)\left(x-1\right)\left(x+2\right)}+\frac{\left(x^{2}-6x+8\right)\left(x-1\right)}{\left(x-5\right)\left(x-1\right)\left(x+2\right)}+\frac{x^{2}-3x+2}{x^{2}-2x-15}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+2\right) and \left(x-5\right)\left(x+2\right) is \left(x-5\right)\left(x-1\right)\left(x+2\right). Multiply \frac{x^{2}-x-12}{\left(x-1\right)\left(x+2\right)} times \frac{x-5}{x-5}. Multiply \frac{x^{2}-6x+8}{\left(x-5\right)\left(x+2\right)} times \frac{x-1}{x-1}.
\frac{\left(x^{2}-x-12\right)\left(x-5\right)+\left(x^{2}-6x+8\right)\left(x-1\right)}{\left(x-5\right)\left(x-1\right)\left(x+2\right)}+\frac{x^{2}-3x+2}{x^{2}-2x-15}
Since \frac{\left(x^{2}-x-12\right)\left(x-5\right)}{\left(x-5\right)\left(x-1\right)\left(x+2\right)} and \frac{\left(x^{2}-6x+8\right)\left(x-1\right)}{\left(x-5\right)\left(x-1\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{x^{3}-5x^{2}-x^{2}+5x-12x+60+x^{3}-x^{2}-6x^{2}+6x+8x-8}{\left(x-5\right)\left(x-1\right)\left(x+2\right)}+\frac{x^{2}-3x+2}{x^{2}-2x-15}
Do the multiplications in \left(x^{2}-x-12\right)\left(x-5\right)+\left(x^{2}-6x+8\right)\left(x-1\right).
\frac{2x^{3}-13x^{2}+7x+52}{\left(x-5\right)\left(x-1\right)\left(x+2\right)}+\frac{x^{2}-3x+2}{x^{2}-2x-15}
Combine like terms in x^{3}-5x^{2}-x^{2}+5x-12x+60+x^{3}-x^{2}-6x^{2}+6x+8x-8.
\frac{2x^{3}-13x^{2}+7x+52}{\left(x-5\right)\left(x-1\right)\left(x+2\right)}+\frac{x^{2}-3x+2}{\left(x-5\right)\left(x+3\right)}
Factor x^{2}-2x-15.
\frac{\left(2x^{3}-13x^{2}+7x+52\right)\left(x+3\right)}{\left(x-5\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)}+\frac{\left(x^{2}-3x+2\right)\left(x-1\right)\left(x+2\right)}{\left(x-5\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-5\right)\left(x-1\right)\left(x+2\right) and \left(x-5\right)\left(x+3\right) is \left(x-5\right)\left(x-1\right)\left(x+2\right)\left(x+3\right). Multiply \frac{2x^{3}-13x^{2}+7x+52}{\left(x-5\right)\left(x-1\right)\left(x+2\right)} times \frac{x+3}{x+3}. Multiply \frac{x^{2}-3x+2}{\left(x-5\right)\left(x+3\right)} times \frac{\left(x-1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}.
\frac{\left(2x^{3}-13x^{2}+7x+52\right)\left(x+3\right)+\left(x^{2}-3x+2\right)\left(x-1\right)\left(x+2\right)}{\left(x-5\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)}
Since \frac{\left(2x^{3}-13x^{2}+7x+52\right)\left(x+3\right)}{\left(x-5\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)} and \frac{\left(x^{2}-3x+2\right)\left(x-1\right)\left(x+2\right)}{\left(x-5\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{2x^{4}+6x^{3}-13x^{3}-39x^{2}+7x^{2}+21x+52x+156+x^{4}+x^{3}-2x^{2}-3x^{3}-3x^{2}+6x+2x^{2}+2x-4}{\left(x-5\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)}
Do the multiplications in \left(2x^{3}-13x^{2}+7x+52\right)\left(x+3\right)+\left(x^{2}-3x+2\right)\left(x-1\right)\left(x+2\right).
\frac{3x^{4}-9x^{3}-35x^{2}+81x+152}{\left(x-5\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)}
Combine like terms in 2x^{4}+6x^{3}-13x^{3}-39x^{2}+7x^{2}+21x+52x+156+x^{4}+x^{3}-2x^{2}-3x^{3}-3x^{2}+6x+2x^{2}+2x-4.
\frac{3x^{4}-9x^{3}-35x^{2}+81x+152}{x^{4}-x^{3}-19x^{2}-11x+30}
Expand \left(x-5\right)\left(x-1\right)\left(x+2\right)\left(x+3\right).