Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(x^{2}-x\right)\left(1-x^{2}\right)}{\left(x^{2}-2x-3\right)\left(x^{2}-4x+3\right)}+\frac{2x}{x^{2}-9}
Divide \frac{x^{2}-x}{x^{2}-2x-3} by \frac{x^{2}-4x+3}{1-x^{2}} by multiplying \frac{x^{2}-x}{x^{2}-2x-3} by the reciprocal of \frac{x^{2}-4x+3}{1-x^{2}}.
\frac{x\left(-x-1\right)\left(x-1\right)^{2}}{\left(x-1\right)\left(x+1\right)\left(x-3\right)^{2}}+\frac{2x}{x^{2}-9}
Factor the expressions that are not already factored in \frac{\left(x^{2}-x\right)\left(1-x^{2}\right)}{\left(x^{2}-2x-3\right)\left(x^{2}-4x+3\right)}.
\frac{-x\left(x+1\right)\left(x-1\right)^{2}}{\left(x-1\right)\left(x+1\right)\left(x-3\right)^{2}}+\frac{2x}{x^{2}-9}
Extract the negative sign in -1-x.
\frac{-x\left(x-1\right)}{\left(x-3\right)^{2}}+\frac{2x}{x^{2}-9}
Cancel out \left(x-1\right)\left(x+1\right) in both numerator and denominator.
\frac{-x\left(x-1\right)}{\left(x-3\right)^{2}}+\frac{2x}{\left(x-3\right)\left(x+3\right)}
Factor x^{2}-9.
\frac{-x\left(x-1\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)^{2}}+\frac{2x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)^{2} and \left(x-3\right)\left(x+3\right) is \left(x+3\right)\left(x-3\right)^{2}. Multiply \frac{-x\left(x-1\right)}{\left(x-3\right)^{2}} times \frac{x+3}{x+3}. Multiply \frac{2x}{\left(x-3\right)\left(x+3\right)} times \frac{x-3}{x-3}.
\frac{-x\left(x-1\right)\left(x+3\right)+2x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)^{2}}
Since \frac{-x\left(x-1\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)^{2}} and \frac{2x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-x^{3}-3x^{2}+x^{2}+3x+2x^{2}-6x}{\left(x+3\right)\left(x-3\right)^{2}}
Do the multiplications in -x\left(x-1\right)\left(x+3\right)+2x\left(x-3\right).
\frac{-x^{3}-3x}{\left(x+3\right)\left(x-3\right)^{2}}
Combine like terms in -x^{3}-3x^{2}+x^{2}+3x+2x^{2}-6x.
\frac{-x^{3}-3x}{x^{3}-3x^{2}-9x+27}
Expand \left(x+3\right)\left(x-3\right)^{2}.
\frac{\left(x^{2}-x\right)\left(1-x^{2}\right)}{\left(x^{2}-2x-3\right)\left(x^{2}-4x+3\right)}+\frac{2x}{x^{2}-9}
Divide \frac{x^{2}-x}{x^{2}-2x-3} by \frac{x^{2}-4x+3}{1-x^{2}} by multiplying \frac{x^{2}-x}{x^{2}-2x-3} by the reciprocal of \frac{x^{2}-4x+3}{1-x^{2}}.
\frac{x\left(-x-1\right)\left(x-1\right)^{2}}{\left(x-1\right)\left(x+1\right)\left(x-3\right)^{2}}+\frac{2x}{x^{2}-9}
Factor the expressions that are not already factored in \frac{\left(x^{2}-x\right)\left(1-x^{2}\right)}{\left(x^{2}-2x-3\right)\left(x^{2}-4x+3\right)}.
\frac{-x\left(x+1\right)\left(x-1\right)^{2}}{\left(x-1\right)\left(x+1\right)\left(x-3\right)^{2}}+\frac{2x}{x^{2}-9}
Extract the negative sign in -1-x.
\frac{-x\left(x-1\right)}{\left(x-3\right)^{2}}+\frac{2x}{x^{2}-9}
Cancel out \left(x-1\right)\left(x+1\right) in both numerator and denominator.
\frac{-x\left(x-1\right)}{\left(x-3\right)^{2}}+\frac{2x}{\left(x-3\right)\left(x+3\right)}
Factor x^{2}-9.
\frac{-x\left(x-1\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)^{2}}+\frac{2x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)^{2} and \left(x-3\right)\left(x+3\right) is \left(x+3\right)\left(x-3\right)^{2}. Multiply \frac{-x\left(x-1\right)}{\left(x-3\right)^{2}} times \frac{x+3}{x+3}. Multiply \frac{2x}{\left(x-3\right)\left(x+3\right)} times \frac{x-3}{x-3}.
\frac{-x\left(x-1\right)\left(x+3\right)+2x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)^{2}}
Since \frac{-x\left(x-1\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)^{2}} and \frac{2x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-x^{3}-3x^{2}+x^{2}+3x+2x^{2}-6x}{\left(x+3\right)\left(x-3\right)^{2}}
Do the multiplications in -x\left(x-1\right)\left(x+3\right)+2x\left(x-3\right).
\frac{-x^{3}-3x}{\left(x+3\right)\left(x-3\right)^{2}}
Combine like terms in -x^{3}-3x^{2}+x^{2}+3x+2x^{2}-6x.
\frac{-x^{3}-3x}{x^{3}-3x^{2}-9x+27}
Expand \left(x+3\right)\left(x-3\right)^{2}.