Evaluate
-\frac{x\left(x^{2}+3\right)}{\left(x+3\right)\left(x-3\right)^{2}}
Expand
-\frac{x^{3}+3x}{\left(x+3\right)\left(x-3\right)^{2}}
Graph
Share
Copied to clipboard
\frac{\left(x^{2}-x\right)\left(1-x^{2}\right)}{\left(x^{2}-2x-3\right)\left(x^{2}-4x+3\right)}+\frac{2x}{x^{2}-9}
Divide \frac{x^{2}-x}{x^{2}-2x-3} by \frac{x^{2}-4x+3}{1-x^{2}} by multiplying \frac{x^{2}-x}{x^{2}-2x-3} by the reciprocal of \frac{x^{2}-4x+3}{1-x^{2}}.
\frac{x\left(-x-1\right)\left(x-1\right)^{2}}{\left(x-1\right)\left(x+1\right)\left(x-3\right)^{2}}+\frac{2x}{x^{2}-9}
Factor the expressions that are not already factored in \frac{\left(x^{2}-x\right)\left(1-x^{2}\right)}{\left(x^{2}-2x-3\right)\left(x^{2}-4x+3\right)}.
\frac{-x\left(x+1\right)\left(x-1\right)^{2}}{\left(x-1\right)\left(x+1\right)\left(x-3\right)^{2}}+\frac{2x}{x^{2}-9}
Extract the negative sign in -1-x.
\frac{-x\left(x-1\right)}{\left(x-3\right)^{2}}+\frac{2x}{x^{2}-9}
Cancel out \left(x-1\right)\left(x+1\right) in both numerator and denominator.
\frac{-x\left(x-1\right)}{\left(x-3\right)^{2}}+\frac{2x}{\left(x-3\right)\left(x+3\right)}
Factor x^{2}-9.
\frac{-x\left(x-1\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)^{2}}+\frac{2x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)^{2} and \left(x-3\right)\left(x+3\right) is \left(x+3\right)\left(x-3\right)^{2}. Multiply \frac{-x\left(x-1\right)}{\left(x-3\right)^{2}} times \frac{x+3}{x+3}. Multiply \frac{2x}{\left(x-3\right)\left(x+3\right)} times \frac{x-3}{x-3}.
\frac{-x\left(x-1\right)\left(x+3\right)+2x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)^{2}}
Since \frac{-x\left(x-1\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)^{2}} and \frac{2x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-x^{3}-3x^{2}+x^{2}+3x+2x^{2}-6x}{\left(x+3\right)\left(x-3\right)^{2}}
Do the multiplications in -x\left(x-1\right)\left(x+3\right)+2x\left(x-3\right).
\frac{-x^{3}-3x}{\left(x+3\right)\left(x-3\right)^{2}}
Combine like terms in -x^{3}-3x^{2}+x^{2}+3x+2x^{2}-6x.
\frac{-x^{3}-3x}{x^{3}-3x^{2}-9x+27}
Expand \left(x+3\right)\left(x-3\right)^{2}.
\frac{\left(x^{2}-x\right)\left(1-x^{2}\right)}{\left(x^{2}-2x-3\right)\left(x^{2}-4x+3\right)}+\frac{2x}{x^{2}-9}
Divide \frac{x^{2}-x}{x^{2}-2x-3} by \frac{x^{2}-4x+3}{1-x^{2}} by multiplying \frac{x^{2}-x}{x^{2}-2x-3} by the reciprocal of \frac{x^{2}-4x+3}{1-x^{2}}.
\frac{x\left(-x-1\right)\left(x-1\right)^{2}}{\left(x-1\right)\left(x+1\right)\left(x-3\right)^{2}}+\frac{2x}{x^{2}-9}
Factor the expressions that are not already factored in \frac{\left(x^{2}-x\right)\left(1-x^{2}\right)}{\left(x^{2}-2x-3\right)\left(x^{2}-4x+3\right)}.
\frac{-x\left(x+1\right)\left(x-1\right)^{2}}{\left(x-1\right)\left(x+1\right)\left(x-3\right)^{2}}+\frac{2x}{x^{2}-9}
Extract the negative sign in -1-x.
\frac{-x\left(x-1\right)}{\left(x-3\right)^{2}}+\frac{2x}{x^{2}-9}
Cancel out \left(x-1\right)\left(x+1\right) in both numerator and denominator.
\frac{-x\left(x-1\right)}{\left(x-3\right)^{2}}+\frac{2x}{\left(x-3\right)\left(x+3\right)}
Factor x^{2}-9.
\frac{-x\left(x-1\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)^{2}}+\frac{2x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)^{2} and \left(x-3\right)\left(x+3\right) is \left(x+3\right)\left(x-3\right)^{2}. Multiply \frac{-x\left(x-1\right)}{\left(x-3\right)^{2}} times \frac{x+3}{x+3}. Multiply \frac{2x}{\left(x-3\right)\left(x+3\right)} times \frac{x-3}{x-3}.
\frac{-x\left(x-1\right)\left(x+3\right)+2x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)^{2}}
Since \frac{-x\left(x-1\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)^{2}} and \frac{2x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-x^{3}-3x^{2}+x^{2}+3x+2x^{2}-6x}{\left(x+3\right)\left(x-3\right)^{2}}
Do the multiplications in -x\left(x-1\right)\left(x+3\right)+2x\left(x-3\right).
\frac{-x^{3}-3x}{\left(x+3\right)\left(x-3\right)^{2}}
Combine like terms in -x^{3}-3x^{2}+x^{2}+3x+2x^{2}-6x.
\frac{-x^{3}-3x}{x^{3}-3x^{2}-9x+27}
Expand \left(x+3\right)\left(x-3\right)^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}