Solve for c
c=2x\left(x-1\right)
x\neq 1\text{ and }x\neq 0
Solve for x (complex solution)
x=\frac{\sqrt{2c+1}+1}{2}
x=\frac{-\sqrt{2c+1}+1}{2}\text{, }c\neq 0
Solve for x
x=\frac{\sqrt{2c+1}+1}{2}
x=\frac{-\sqrt{2c+1}+1}{2}\text{, }c\geq -\frac{1}{2}\text{ and }c\neq 0
Graph
Share
Copied to clipboard
2\left(x^{2}-x\right)-c\left(x-2\right)=c\left(3-x\right)
Variable c cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2c, the least common multiple of c,2.
2x^{2}-2x-c\left(x-2\right)=c\left(3-x\right)
Use the distributive property to multiply 2 by x^{2}-x.
2x^{2}-2x-\left(cx-2c\right)=c\left(3-x\right)
Use the distributive property to multiply c by x-2.
2x^{2}-2x-cx+2c=c\left(3-x\right)
To find the opposite of cx-2c, find the opposite of each term.
2x^{2}-2x-cx+2c=3c-cx
Use the distributive property to multiply c by 3-x.
2x^{2}-2x-cx+2c-3c=-cx
Subtract 3c from both sides.
2x^{2}-2x-cx-c=-cx
Combine 2c and -3c to get -c.
2x^{2}-2x-cx-c+cx=0
Add cx to both sides.
2x^{2}-2x-c=0
Combine -cx and cx to get 0.
-2x-c=-2x^{2}
Subtract 2x^{2} from both sides. Anything subtracted from zero gives its negation.
-c=-2x^{2}+2x
Add 2x to both sides.
-c=2x-2x^{2}
The equation is in standard form.
\frac{-c}{-1}=\frac{2x\left(1-x\right)}{-1}
Divide both sides by -1.
c=\frac{2x\left(1-x\right)}{-1}
Dividing by -1 undoes the multiplication by -1.
c=-2x\left(1-x\right)
Divide 2x\left(1-x\right) by -1.
c=-2x\left(1-x\right)\text{, }c\neq 0
Variable c cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}