Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-x=\frac{2}{15}\times 90
Multiply both sides by 90.
x^{2}-x=12
Multiply \frac{2}{15} and 90 to get 12.
x^{2}-x-12=0
Subtract 12 from both sides.
a+b=-1 ab=-12
To solve the equation, factor x^{2}-x-12 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
1,-12 2,-6 3,-4
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -12.
1-12=-11 2-6=-4 3-4=-1
Calculate the sum for each pair.
a=-4 b=3
The solution is the pair that gives sum -1.
\left(x-4\right)\left(x+3\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=4 x=-3
To find equation solutions, solve x-4=0 and x+3=0.
x^{2}-x=\frac{2}{15}\times 90
Multiply both sides by 90.
x^{2}-x=12
Multiply \frac{2}{15} and 90 to get 12.
x^{2}-x-12=0
Subtract 12 from both sides.
a+b=-1 ab=1\left(-12\right)=-12
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-12. To find a and b, set up a system to be solved.
1,-12 2,-6 3,-4
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -12.
1-12=-11 2-6=-4 3-4=-1
Calculate the sum for each pair.
a=-4 b=3
The solution is the pair that gives sum -1.
\left(x^{2}-4x\right)+\left(3x-12\right)
Rewrite x^{2}-x-12 as \left(x^{2}-4x\right)+\left(3x-12\right).
x\left(x-4\right)+3\left(x-4\right)
Factor out x in the first and 3 in the second group.
\left(x-4\right)\left(x+3\right)
Factor out common term x-4 by using distributive property.
x=4 x=-3
To find equation solutions, solve x-4=0 and x+3=0.
x^{2}-x=\frac{2}{15}\times 90
Multiply both sides by 90.
x^{2}-x=12
Multiply \frac{2}{15} and 90 to get 12.
x^{2}-x-12=0
Subtract 12 from both sides.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-12\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -1 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+48}}{2}
Multiply -4 times -12.
x=\frac{-\left(-1\right)±\sqrt{49}}{2}
Add 1 to 48.
x=\frac{-\left(-1\right)±7}{2}
Take the square root of 49.
x=\frac{1±7}{2}
The opposite of -1 is 1.
x=\frac{8}{2}
Now solve the equation x=\frac{1±7}{2} when ± is plus. Add 1 to 7.
x=4
Divide 8 by 2.
x=-\frac{6}{2}
Now solve the equation x=\frac{1±7}{2} when ± is minus. Subtract 7 from 1.
x=-3
Divide -6 by 2.
x=4 x=-3
The equation is now solved.
x^{2}-x=\frac{2}{15}\times 90
Multiply both sides by 90.
x^{2}-x=12
Multiply \frac{2}{15} and 90 to get 12.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=12+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=12+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=\frac{49}{4}
Add 12 to \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{49}{4}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{7}{2} x-\frac{1}{2}=-\frac{7}{2}
Simplify.
x=4 x=-3
Add \frac{1}{2} to both sides of the equation.