Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-x=\frac{2}{15}\times 9
Multiply both sides by 9.
x^{2}-x=\frac{6}{5}
Multiply \frac{2}{15} and 9 to get \frac{6}{5}.
x^{2}-x-\frac{6}{5}=0
Subtract \frac{6}{5} from both sides.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-\frac{6}{5}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -1 for b, and -\frac{6}{5} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+\frac{24}{5}}}{2}
Multiply -4 times -\frac{6}{5}.
x=\frac{-\left(-1\right)±\sqrt{\frac{29}{5}}}{2}
Add 1 to \frac{24}{5}.
x=\frac{-\left(-1\right)±\frac{\sqrt{145}}{5}}{2}
Take the square root of \frac{29}{5}.
x=\frac{1±\frac{\sqrt{145}}{5}}{2}
The opposite of -1 is 1.
x=\frac{\frac{\sqrt{145}}{5}+1}{2}
Now solve the equation x=\frac{1±\frac{\sqrt{145}}{5}}{2} when ± is plus. Add 1 to \frac{\sqrt{145}}{5}.
x=\frac{\sqrt{145}}{10}+\frac{1}{2}
Divide 1+\frac{\sqrt{145}}{5} by 2.
x=\frac{-\frac{\sqrt{145}}{5}+1}{2}
Now solve the equation x=\frac{1±\frac{\sqrt{145}}{5}}{2} when ± is minus. Subtract \frac{\sqrt{145}}{5} from 1.
x=-\frac{\sqrt{145}}{10}+\frac{1}{2}
Divide 1-\frac{\sqrt{145}}{5} by 2.
x=\frac{\sqrt{145}}{10}+\frac{1}{2} x=-\frac{\sqrt{145}}{10}+\frac{1}{2}
The equation is now solved.
x^{2}-x=\frac{2}{15}\times 9
Multiply both sides by 9.
x^{2}-x=\frac{6}{5}
Multiply \frac{2}{15} and 9 to get \frac{6}{5}.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\frac{6}{5}+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=\frac{6}{5}+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=\frac{29}{20}
Add \frac{6}{5} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{2}\right)^{2}=\frac{29}{20}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{29}{20}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{\sqrt{145}}{10} x-\frac{1}{2}=-\frac{\sqrt{145}}{10}
Simplify.
x=\frac{\sqrt{145}}{10}+\frac{1}{2} x=-\frac{\sqrt{145}}{10}+\frac{1}{2}
Add \frac{1}{2} to both sides of the equation.