Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x^{2}-x+9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{\left(x-3\right)\left(x+3\right)}-\frac{1}{x-3}+\frac{1}{x}
Factor x^{3}-9x. Factor x^{2}-9.
\frac{x^{2}-x+9}{x\left(x-3\right)\left(x+3\right)}+\frac{x}{x\left(x-3\right)\left(x+3\right)}-\frac{1}{x-3}+\frac{1}{x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-3\right)\left(x+3\right) and \left(x-3\right)\left(x+3\right) is x\left(x-3\right)\left(x+3\right). Multiply \frac{1}{\left(x-3\right)\left(x+3\right)} times \frac{x}{x}.
\frac{x^{2}-x+9+x}{x\left(x-3\right)\left(x+3\right)}-\frac{1}{x-3}+\frac{1}{x}
Since \frac{x^{2}-x+9}{x\left(x-3\right)\left(x+3\right)} and \frac{x}{x\left(x-3\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}+9}{x\left(x-3\right)\left(x+3\right)}-\frac{1}{x-3}+\frac{1}{x}
Combine like terms in x^{2}-x+9+x.
\frac{x^{2}+9}{x\left(x-3\right)\left(x+3\right)}-\frac{x\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-3\right)\left(x+3\right) and x-3 is x\left(x-3\right)\left(x+3\right). Multiply \frac{1}{x-3} times \frac{x\left(x+3\right)}{x\left(x+3\right)}.
\frac{x^{2}+9-x\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
Since \frac{x^{2}+9}{x\left(x-3\right)\left(x+3\right)} and \frac{x\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+9-x^{2}-3x}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
Do the multiplications in x^{2}+9-x\left(x+3\right).
\frac{9-3x}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
Combine like terms in x^{2}+9-x^{2}-3x.
\frac{3\left(-x+3\right)}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
Factor the expressions that are not already factored in \frac{9-3x}{x\left(x-3\right)\left(x+3\right)}.
\frac{-3\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
Extract the negative sign in 3-x.
\frac{-3}{x\left(x+3\right)}+\frac{1}{x}
Cancel out x-3 in both numerator and denominator.
\frac{-3}{x\left(x+3\right)}+\frac{x+3}{x\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x+3\right) and x is x\left(x+3\right). Multiply \frac{1}{x} times \frac{x+3}{x+3}.
\frac{-3+x+3}{x\left(x+3\right)}
Since \frac{-3}{x\left(x+3\right)} and \frac{x+3}{x\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{x}{x\left(x+3\right)}
Combine like terms in -3+x+3.
\frac{1}{x+3}
Cancel out x in both numerator and denominator.
\frac{x^{2}-x+9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{\left(x-3\right)\left(x+3\right)}-\frac{1}{x-3}+\frac{1}{x}
Factor x^{3}-9x. Factor x^{2}-9.
\frac{x^{2}-x+9}{x\left(x-3\right)\left(x+3\right)}+\frac{x}{x\left(x-3\right)\left(x+3\right)}-\frac{1}{x-3}+\frac{1}{x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-3\right)\left(x+3\right) and \left(x-3\right)\left(x+3\right) is x\left(x-3\right)\left(x+3\right). Multiply \frac{1}{\left(x-3\right)\left(x+3\right)} times \frac{x}{x}.
\frac{x^{2}-x+9+x}{x\left(x-3\right)\left(x+3\right)}-\frac{1}{x-3}+\frac{1}{x}
Since \frac{x^{2}-x+9}{x\left(x-3\right)\left(x+3\right)} and \frac{x}{x\left(x-3\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}+9}{x\left(x-3\right)\left(x+3\right)}-\frac{1}{x-3}+\frac{1}{x}
Combine like terms in x^{2}-x+9+x.
\frac{x^{2}+9}{x\left(x-3\right)\left(x+3\right)}-\frac{x\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-3\right)\left(x+3\right) and x-3 is x\left(x-3\right)\left(x+3\right). Multiply \frac{1}{x-3} times \frac{x\left(x+3\right)}{x\left(x+3\right)}.
\frac{x^{2}+9-x\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
Since \frac{x^{2}+9}{x\left(x-3\right)\left(x+3\right)} and \frac{x\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+9-x^{2}-3x}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
Do the multiplications in x^{2}+9-x\left(x+3\right).
\frac{9-3x}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
Combine like terms in x^{2}+9-x^{2}-3x.
\frac{3\left(-x+3\right)}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
Factor the expressions that are not already factored in \frac{9-3x}{x\left(x-3\right)\left(x+3\right)}.
\frac{-3\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
Extract the negative sign in 3-x.
\frac{-3}{x\left(x+3\right)}+\frac{1}{x}
Cancel out x-3 in both numerator and denominator.
\frac{-3}{x\left(x+3\right)}+\frac{x+3}{x\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x+3\right) and x is x\left(x+3\right). Multiply \frac{1}{x} times \frac{x+3}{x+3}.
\frac{-3+x+3}{x\left(x+3\right)}
Since \frac{-3}{x\left(x+3\right)} and \frac{x+3}{x\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{x}{x\left(x+3\right)}
Combine like terms in -3+x+3.
\frac{1}{x+3}
Cancel out x in both numerator and denominator.