Evaluate
\frac{1}{x+3}
Expand
\frac{1}{x+3}
Graph
Share
Copied to clipboard
\frac{x^{2}-x+9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{\left(x-3\right)\left(x+3\right)}-\frac{1}{x-3}+\frac{1}{x}
Factor x^{3}-9x. Factor x^{2}-9.
\frac{x^{2}-x+9}{x\left(x-3\right)\left(x+3\right)}+\frac{x}{x\left(x-3\right)\left(x+3\right)}-\frac{1}{x-3}+\frac{1}{x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-3\right)\left(x+3\right) and \left(x-3\right)\left(x+3\right) is x\left(x-3\right)\left(x+3\right). Multiply \frac{1}{\left(x-3\right)\left(x+3\right)} times \frac{x}{x}.
\frac{x^{2}-x+9+x}{x\left(x-3\right)\left(x+3\right)}-\frac{1}{x-3}+\frac{1}{x}
Since \frac{x^{2}-x+9}{x\left(x-3\right)\left(x+3\right)} and \frac{x}{x\left(x-3\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}+9}{x\left(x-3\right)\left(x+3\right)}-\frac{1}{x-3}+\frac{1}{x}
Combine like terms in x^{2}-x+9+x.
\frac{x^{2}+9}{x\left(x-3\right)\left(x+3\right)}-\frac{x\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-3\right)\left(x+3\right) and x-3 is x\left(x-3\right)\left(x+3\right). Multiply \frac{1}{x-3} times \frac{x\left(x+3\right)}{x\left(x+3\right)}.
\frac{x^{2}+9-x\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
Since \frac{x^{2}+9}{x\left(x-3\right)\left(x+3\right)} and \frac{x\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+9-x^{2}-3x}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
Do the multiplications in x^{2}+9-x\left(x+3\right).
\frac{9-3x}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
Combine like terms in x^{2}+9-x^{2}-3x.
\frac{3\left(-x+3\right)}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
Factor the expressions that are not already factored in \frac{9-3x}{x\left(x-3\right)\left(x+3\right)}.
\frac{-3\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
Extract the negative sign in 3-x.
\frac{-3}{x\left(x+3\right)}+\frac{1}{x}
Cancel out x-3 in both numerator and denominator.
\frac{-3}{x\left(x+3\right)}+\frac{x+3}{x\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x+3\right) and x is x\left(x+3\right). Multiply \frac{1}{x} times \frac{x+3}{x+3}.
\frac{-3+x+3}{x\left(x+3\right)}
Since \frac{-3}{x\left(x+3\right)} and \frac{x+3}{x\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{x}{x\left(x+3\right)}
Combine like terms in -3+x+3.
\frac{1}{x+3}
Cancel out x in both numerator and denominator.
\frac{x^{2}-x+9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{\left(x-3\right)\left(x+3\right)}-\frac{1}{x-3}+\frac{1}{x}
Factor x^{3}-9x. Factor x^{2}-9.
\frac{x^{2}-x+9}{x\left(x-3\right)\left(x+3\right)}+\frac{x}{x\left(x-3\right)\left(x+3\right)}-\frac{1}{x-3}+\frac{1}{x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-3\right)\left(x+3\right) and \left(x-3\right)\left(x+3\right) is x\left(x-3\right)\left(x+3\right). Multiply \frac{1}{\left(x-3\right)\left(x+3\right)} times \frac{x}{x}.
\frac{x^{2}-x+9+x}{x\left(x-3\right)\left(x+3\right)}-\frac{1}{x-3}+\frac{1}{x}
Since \frac{x^{2}-x+9}{x\left(x-3\right)\left(x+3\right)} and \frac{x}{x\left(x-3\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}+9}{x\left(x-3\right)\left(x+3\right)}-\frac{1}{x-3}+\frac{1}{x}
Combine like terms in x^{2}-x+9+x.
\frac{x^{2}+9}{x\left(x-3\right)\left(x+3\right)}-\frac{x\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-3\right)\left(x+3\right) and x-3 is x\left(x-3\right)\left(x+3\right). Multiply \frac{1}{x-3} times \frac{x\left(x+3\right)}{x\left(x+3\right)}.
\frac{x^{2}+9-x\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
Since \frac{x^{2}+9}{x\left(x-3\right)\left(x+3\right)} and \frac{x\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+9-x^{2}-3x}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
Do the multiplications in x^{2}+9-x\left(x+3\right).
\frac{9-3x}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
Combine like terms in x^{2}+9-x^{2}-3x.
\frac{3\left(-x+3\right)}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
Factor the expressions that are not already factored in \frac{9-3x}{x\left(x-3\right)\left(x+3\right)}.
\frac{-3\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
Extract the negative sign in 3-x.
\frac{-3}{x\left(x+3\right)}+\frac{1}{x}
Cancel out x-3 in both numerator and denominator.
\frac{-3}{x\left(x+3\right)}+\frac{x+3}{x\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x+3\right) and x is x\left(x+3\right). Multiply \frac{1}{x} times \frac{x+3}{x+3}.
\frac{-3+x+3}{x\left(x+3\right)}
Since \frac{-3}{x\left(x+3\right)} and \frac{x+3}{x\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{x}{x\left(x+3\right)}
Combine like terms in -3+x+3.
\frac{1}{x+3}
Cancel out x in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}