Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x^{2}-x+1}{x^{2}+x+1}+\frac{2x\left(x-1\right)^{2}}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}+\frac{2x^{2}\left(x^{2}-1\right)^{2}}{x^{8}+x^{4}+1}
Factor x^{4}+x^{2}+1.
\frac{\left(x^{2}-x+1\right)\left(x^{2}-x+1\right)}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}+\frac{2x\left(x-1\right)^{2}}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}+\frac{2x^{2}\left(x^{2}-1\right)^{2}}{x^{8}+x^{4}+1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2}+x+1 and \left(x^{2}+x+1\right)\left(x^{2}-x+1\right) is \left(x^{2}+x+1\right)\left(x^{2}-x+1\right). Multiply \frac{x^{2}-x+1}{x^{2}+x+1} times \frac{x^{2}-x+1}{x^{2}-x+1}.
\frac{\left(x^{2}-x+1\right)\left(x^{2}-x+1\right)+2x\left(x-1\right)^{2}}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}+\frac{2x^{2}\left(x^{2}-1\right)^{2}}{x^{8}+x^{4}+1}
Since \frac{\left(x^{2}-x+1\right)\left(x^{2}-x+1\right)}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)} and \frac{2x\left(x-1\right)^{2}}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)} have the same denominator, add them by adding their numerators.
\frac{x^{4}-x^{3}+x^{2}-x^{3}+x^{2}-x+x^{2}-x+1+2x^{3}-4x^{2}+2x}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}+\frac{2x^{2}\left(x^{2}-1\right)^{2}}{x^{8}+x^{4}+1}
Do the multiplications in \left(x^{2}-x+1\right)\left(x^{2}-x+1\right)+2x\left(x-1\right)^{2}.
\frac{x^{4}-x^{2}+1}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}+\frac{2x^{2}\left(x^{2}-1\right)^{2}}{x^{8}+x^{4}+1}
Combine like terms in x^{4}-x^{3}+x^{2}-x^{3}+x^{2}-x+x^{2}-x+1+2x^{3}-4x^{2}+2x.
\frac{x^{4}-x^{2}+1}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}+\frac{2x^{2}\left(x^{2}-1\right)^{2}}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right)}
Factor x^{8}+x^{4}+1.
\frac{\left(x^{4}-x^{2}+1\right)\left(x^{4}-x^{2}+1\right)}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right)}+\frac{2x^{2}\left(x^{2}-1\right)^{2}}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x^{2}+x+1\right)\left(x^{2}-x+1\right) and \left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right) is \left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right). Multiply \frac{x^{4}-x^{2}+1}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)} times \frac{x^{4}-x^{2}+1}{x^{4}-x^{2}+1}.
\frac{\left(x^{4}-x^{2}+1\right)\left(x^{4}-x^{2}+1\right)+2x^{2}\left(x^{2}-1\right)^{2}}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right)}
Since \frac{\left(x^{4}-x^{2}+1\right)\left(x^{4}-x^{2}+1\right)}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right)} and \frac{2x^{2}\left(x^{2}-1\right)^{2}}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right)} have the same denominator, add them by adding their numerators.
\frac{x^{8}-x^{6}+x^{4}-x^{6}+x^{4}-x^{2}+x^{4}-x^{2}+1+2x^{6}-4x^{4}+2x^{2}}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right)}
Do the multiplications in \left(x^{4}-x^{2}+1\right)\left(x^{4}-x^{2}+1\right)+2x^{2}\left(x^{2}-1\right)^{2}.
\frac{1+x^{8}-x^{4}}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right)}
Combine like terms in x^{8}-x^{6}+x^{4}-x^{6}+x^{4}-x^{2}+x^{4}-x^{2}+1+2x^{6}-4x^{4}+2x^{2}.
\frac{1+x^{8}-x^{4}}{x^{8}+x^{4}+1}
Expand \left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right).
\frac{x^{2}-x+1}{x^{2}+x+1}+\frac{2x\left(x-1\right)^{2}}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}+\frac{2x^{2}\left(x^{2}-1\right)^{2}}{x^{8}+x^{4}+1}
Factor x^{4}+x^{2}+1.
\frac{\left(x^{2}-x+1\right)\left(x^{2}-x+1\right)}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}+\frac{2x\left(x-1\right)^{2}}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}+\frac{2x^{2}\left(x^{2}-1\right)^{2}}{x^{8}+x^{4}+1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2}+x+1 and \left(x^{2}+x+1\right)\left(x^{2}-x+1\right) is \left(x^{2}+x+1\right)\left(x^{2}-x+1\right). Multiply \frac{x^{2}-x+1}{x^{2}+x+1} times \frac{x^{2}-x+1}{x^{2}-x+1}.
\frac{\left(x^{2}-x+1\right)\left(x^{2}-x+1\right)+2x\left(x-1\right)^{2}}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}+\frac{2x^{2}\left(x^{2}-1\right)^{2}}{x^{8}+x^{4}+1}
Since \frac{\left(x^{2}-x+1\right)\left(x^{2}-x+1\right)}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)} and \frac{2x\left(x-1\right)^{2}}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)} have the same denominator, add them by adding their numerators.
\frac{x^{4}-x^{3}+x^{2}-x^{3}+x^{2}-x+x^{2}-x+1+2x^{3}-4x^{2}+2x}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}+\frac{2x^{2}\left(x^{2}-1\right)^{2}}{x^{8}+x^{4}+1}
Do the multiplications in \left(x^{2}-x+1\right)\left(x^{2}-x+1\right)+2x\left(x-1\right)^{2}.
\frac{x^{4}-x^{2}+1}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}+\frac{2x^{2}\left(x^{2}-1\right)^{2}}{x^{8}+x^{4}+1}
Combine like terms in x^{4}-x^{3}+x^{2}-x^{3}+x^{2}-x+x^{2}-x+1+2x^{3}-4x^{2}+2x.
\frac{x^{4}-x^{2}+1}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}+\frac{2x^{2}\left(x^{2}-1\right)^{2}}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right)}
Factor x^{8}+x^{4}+1.
\frac{\left(x^{4}-x^{2}+1\right)\left(x^{4}-x^{2}+1\right)}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right)}+\frac{2x^{2}\left(x^{2}-1\right)^{2}}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x^{2}+x+1\right)\left(x^{2}-x+1\right) and \left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right) is \left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right). Multiply \frac{x^{4}-x^{2}+1}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)} times \frac{x^{4}-x^{2}+1}{x^{4}-x^{2}+1}.
\frac{\left(x^{4}-x^{2}+1\right)\left(x^{4}-x^{2}+1\right)+2x^{2}\left(x^{2}-1\right)^{2}}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right)}
Since \frac{\left(x^{4}-x^{2}+1\right)\left(x^{4}-x^{2}+1\right)}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right)} and \frac{2x^{2}\left(x^{2}-1\right)^{2}}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right)} have the same denominator, add them by adding their numerators.
\frac{x^{8}-x^{6}+x^{4}-x^{6}+x^{4}-x^{2}+x^{4}-x^{2}+1+2x^{6}-4x^{4}+2x^{2}}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right)}
Do the multiplications in \left(x^{4}-x^{2}+1\right)\left(x^{4}-x^{2}+1\right)+2x^{2}\left(x^{2}-1\right)^{2}.
\frac{1+x^{8}-x^{4}}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right)}
Combine like terms in x^{8}-x^{6}+x^{4}-x^{6}+x^{4}-x^{2}+x^{4}-x^{2}+1+2x^{6}-4x^{4}+2x^{2}.
\frac{1+x^{8}-x^{4}}{x^{8}+x^{4}+1}
Expand \left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right).