Evaluate
\frac{x^{8}-x^{4}+1}{\left(x^{4}+1\right)^{2}-x^{4}}
Expand
\frac{x^{8}-x^{4}+1}{\left(x^{2}-x+1\right)\left(x^{6}+x^{5}-x^{3}+x+1\right)}
Graph
Share
Copied to clipboard
\frac{x^{2}-x+1}{x^{2}+x+1}+\frac{2x\left(x-1\right)^{2}}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}+\frac{2x^{2}\left(x^{2}-1\right)^{2}}{x^{8}+x^{4}+1}
Factor x^{4}+x^{2}+1.
\frac{\left(x^{2}-x+1\right)\left(x^{2}-x+1\right)}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}+\frac{2x\left(x-1\right)^{2}}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}+\frac{2x^{2}\left(x^{2}-1\right)^{2}}{x^{8}+x^{4}+1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2}+x+1 and \left(x^{2}+x+1\right)\left(x^{2}-x+1\right) is \left(x^{2}+x+1\right)\left(x^{2}-x+1\right). Multiply \frac{x^{2}-x+1}{x^{2}+x+1} times \frac{x^{2}-x+1}{x^{2}-x+1}.
\frac{\left(x^{2}-x+1\right)\left(x^{2}-x+1\right)+2x\left(x-1\right)^{2}}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}+\frac{2x^{2}\left(x^{2}-1\right)^{2}}{x^{8}+x^{4}+1}
Since \frac{\left(x^{2}-x+1\right)\left(x^{2}-x+1\right)}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)} and \frac{2x\left(x-1\right)^{2}}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)} have the same denominator, add them by adding their numerators.
\frac{x^{4}-x^{3}+x^{2}-x^{3}+x^{2}-x+x^{2}-x+1+2x^{3}-4x^{2}+2x}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}+\frac{2x^{2}\left(x^{2}-1\right)^{2}}{x^{8}+x^{4}+1}
Do the multiplications in \left(x^{2}-x+1\right)\left(x^{2}-x+1\right)+2x\left(x-1\right)^{2}.
\frac{x^{4}-x^{2}+1}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}+\frac{2x^{2}\left(x^{2}-1\right)^{2}}{x^{8}+x^{4}+1}
Combine like terms in x^{4}-x^{3}+x^{2}-x^{3}+x^{2}-x+x^{2}-x+1+2x^{3}-4x^{2}+2x.
\frac{x^{4}-x^{2}+1}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}+\frac{2x^{2}\left(x^{2}-1\right)^{2}}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right)}
Factor x^{8}+x^{4}+1.
\frac{\left(x^{4}-x^{2}+1\right)\left(x^{4}-x^{2}+1\right)}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right)}+\frac{2x^{2}\left(x^{2}-1\right)^{2}}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x^{2}+x+1\right)\left(x^{2}-x+1\right) and \left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right) is \left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right). Multiply \frac{x^{4}-x^{2}+1}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)} times \frac{x^{4}-x^{2}+1}{x^{4}-x^{2}+1}.
\frac{\left(x^{4}-x^{2}+1\right)\left(x^{4}-x^{2}+1\right)+2x^{2}\left(x^{2}-1\right)^{2}}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right)}
Since \frac{\left(x^{4}-x^{2}+1\right)\left(x^{4}-x^{2}+1\right)}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right)} and \frac{2x^{2}\left(x^{2}-1\right)^{2}}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right)} have the same denominator, add them by adding their numerators.
\frac{x^{8}-x^{6}+x^{4}-x^{6}+x^{4}-x^{2}+x^{4}-x^{2}+1+2x^{6}-4x^{4}+2x^{2}}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right)}
Do the multiplications in \left(x^{4}-x^{2}+1\right)\left(x^{4}-x^{2}+1\right)+2x^{2}\left(x^{2}-1\right)^{2}.
\frac{1+x^{8}-x^{4}}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right)}
Combine like terms in x^{8}-x^{6}+x^{4}-x^{6}+x^{4}-x^{2}+x^{4}-x^{2}+1+2x^{6}-4x^{4}+2x^{2}.
\frac{1+x^{8}-x^{4}}{x^{8}+x^{4}+1}
Expand \left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right).
\frac{x^{2}-x+1}{x^{2}+x+1}+\frac{2x\left(x-1\right)^{2}}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}+\frac{2x^{2}\left(x^{2}-1\right)^{2}}{x^{8}+x^{4}+1}
Factor x^{4}+x^{2}+1.
\frac{\left(x^{2}-x+1\right)\left(x^{2}-x+1\right)}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}+\frac{2x\left(x-1\right)^{2}}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}+\frac{2x^{2}\left(x^{2}-1\right)^{2}}{x^{8}+x^{4}+1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2}+x+1 and \left(x^{2}+x+1\right)\left(x^{2}-x+1\right) is \left(x^{2}+x+1\right)\left(x^{2}-x+1\right). Multiply \frac{x^{2}-x+1}{x^{2}+x+1} times \frac{x^{2}-x+1}{x^{2}-x+1}.
\frac{\left(x^{2}-x+1\right)\left(x^{2}-x+1\right)+2x\left(x-1\right)^{2}}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}+\frac{2x^{2}\left(x^{2}-1\right)^{2}}{x^{8}+x^{4}+1}
Since \frac{\left(x^{2}-x+1\right)\left(x^{2}-x+1\right)}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)} and \frac{2x\left(x-1\right)^{2}}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)} have the same denominator, add them by adding their numerators.
\frac{x^{4}-x^{3}+x^{2}-x^{3}+x^{2}-x+x^{2}-x+1+2x^{3}-4x^{2}+2x}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}+\frac{2x^{2}\left(x^{2}-1\right)^{2}}{x^{8}+x^{4}+1}
Do the multiplications in \left(x^{2}-x+1\right)\left(x^{2}-x+1\right)+2x\left(x-1\right)^{2}.
\frac{x^{4}-x^{2}+1}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}+\frac{2x^{2}\left(x^{2}-1\right)^{2}}{x^{8}+x^{4}+1}
Combine like terms in x^{4}-x^{3}+x^{2}-x^{3}+x^{2}-x+x^{2}-x+1+2x^{3}-4x^{2}+2x.
\frac{x^{4}-x^{2}+1}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}+\frac{2x^{2}\left(x^{2}-1\right)^{2}}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right)}
Factor x^{8}+x^{4}+1.
\frac{\left(x^{4}-x^{2}+1\right)\left(x^{4}-x^{2}+1\right)}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right)}+\frac{2x^{2}\left(x^{2}-1\right)^{2}}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x^{2}+x+1\right)\left(x^{2}-x+1\right) and \left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right) is \left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right). Multiply \frac{x^{4}-x^{2}+1}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)} times \frac{x^{4}-x^{2}+1}{x^{4}-x^{2}+1}.
\frac{\left(x^{4}-x^{2}+1\right)\left(x^{4}-x^{2}+1\right)+2x^{2}\left(x^{2}-1\right)^{2}}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right)}
Since \frac{\left(x^{4}-x^{2}+1\right)\left(x^{4}-x^{2}+1\right)}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right)} and \frac{2x^{2}\left(x^{2}-1\right)^{2}}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right)} have the same denominator, add them by adding their numerators.
\frac{x^{8}-x^{6}+x^{4}-x^{6}+x^{4}-x^{2}+x^{4}-x^{2}+1+2x^{6}-4x^{4}+2x^{2}}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right)}
Do the multiplications in \left(x^{4}-x^{2}+1\right)\left(x^{4}-x^{2}+1\right)+2x^{2}\left(x^{2}-1\right)^{2}.
\frac{1+x^{8}-x^{4}}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right)}
Combine like terms in x^{8}-x^{6}+x^{4}-x^{6}+x^{4}-x^{2}+x^{4}-x^{2}+1+2x^{6}-4x^{4}+2x^{2}.
\frac{1+x^{8}-x^{4}}{x^{8}+x^{4}+1}
Expand \left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}