Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x^{2}-8x+15}{x^{2}-8x+7}\times \frac{\left(x-7\right)\left(x+8\right)}{\left(x+8\right)\left(-x+3\right)}
Factor the expressions that are not already factored in \frac{x^{2}+x-56}{24-5x-x^{2}}.
\frac{x^{2}-8x+15}{x^{2}-8x+7}\times \frac{x-7}{-x+3}
Cancel out x+8 in both numerator and denominator.
\frac{\left(x^{2}-8x+15\right)\left(x-7\right)}{\left(x^{2}-8x+7\right)\left(-x+3\right)}
Multiply \frac{x^{2}-8x+15}{x^{2}-8x+7} times \frac{x-7}{-x+3} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x-7\right)\left(x-5\right)\left(x-3\right)}{\left(x-7\right)\left(x-1\right)\left(-x+3\right)}
Factor the expressions that are not already factored.
\frac{-\left(x-7\right)\left(x-5\right)\left(-x+3\right)}{\left(x-7\right)\left(x-1\right)\left(-x+3\right)}
Extract the negative sign in -3+x.
\frac{-\left(x-5\right)}{x-1}
Cancel out \left(x-7\right)\left(-x+3\right) in both numerator and denominator.
\frac{-x+5}{x-1}
Expand the expression.
\frac{x^{2}-8x+15}{x^{2}-8x+7}\times \frac{\left(x-7\right)\left(x+8\right)}{\left(x+8\right)\left(-x+3\right)}
Factor the expressions that are not already factored in \frac{x^{2}+x-56}{24-5x-x^{2}}.
\frac{x^{2}-8x+15}{x^{2}-8x+7}\times \frac{x-7}{-x+3}
Cancel out x+8 in both numerator and denominator.
\frac{\left(x^{2}-8x+15\right)\left(x-7\right)}{\left(x^{2}-8x+7\right)\left(-x+3\right)}
Multiply \frac{x^{2}-8x+15}{x^{2}-8x+7} times \frac{x-7}{-x+3} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x-7\right)\left(x-5\right)\left(x-3\right)}{\left(x-7\right)\left(x-1\right)\left(-x+3\right)}
Factor the expressions that are not already factored.
\frac{-\left(x-7\right)\left(x-5\right)\left(-x+3\right)}{\left(x-7\right)\left(x-1\right)\left(-x+3\right)}
Extract the negative sign in -3+x.
\frac{-\left(x-5\right)}{x-1}
Cancel out \left(x-7\right)\left(-x+3\right) in both numerator and denominator.
\frac{-x+5}{x-1}
Expand the expression.