Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Share

\frac{\left(x^{2}-8x+15\right)\times 10x^{2}}{\left(5x^{2}+10x\right)\left(x^{2}-9\right)}\times \frac{x^{2}+5x+6}{2x-10}
Divide \frac{x^{2}-8x+15}{5x^{2}+10x} by \frac{x^{2}-9}{10x^{2}} by multiplying \frac{x^{2}-8x+15}{5x^{2}+10x} by the reciprocal of \frac{x^{2}-9}{10x^{2}}.
\frac{10\left(x-5\right)\left(x-3\right)x^{2}}{5x\left(x-3\right)\left(x+2\right)\left(x+3\right)}\times \frac{x^{2}+5x+6}{2x-10}
Factor the expressions that are not already factored in \frac{\left(x^{2}-8x+15\right)\times 10x^{2}}{\left(5x^{2}+10x\right)\left(x^{2}-9\right)}.
\frac{2x\left(x-5\right)}{\left(x+2\right)\left(x+3\right)}\times \frac{x^{2}+5x+6}{2x-10}
Cancel out 5x\left(x-3\right) in both numerator and denominator.
\frac{2x\left(x-5\right)\left(x^{2}+5x+6\right)}{\left(x+2\right)\left(x+3\right)\left(2x-10\right)}
Multiply \frac{2x\left(x-5\right)}{\left(x+2\right)\left(x+3\right)} times \frac{x^{2}+5x+6}{2x-10} by multiplying numerator times numerator and denominator times denominator.
\frac{2x\left(x-5\right)\left(x+2\right)\left(x+3\right)}{2\left(x-5\right)\left(x+2\right)\left(x+3\right)}
Factor the expressions that are not already factored.
x
Cancel out 2\left(x-5\right)\left(x+2\right)\left(x+3\right) in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x^{2}-8x+15\right)\times 10x^{2}}{\left(5x^{2}+10x\right)\left(x^{2}-9\right)}\times \frac{x^{2}+5x+6}{2x-10})
Divide \frac{x^{2}-8x+15}{5x^{2}+10x} by \frac{x^{2}-9}{10x^{2}} by multiplying \frac{x^{2}-8x+15}{5x^{2}+10x} by the reciprocal of \frac{x^{2}-9}{10x^{2}}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{10\left(x-5\right)\left(x-3\right)x^{2}}{5x\left(x-3\right)\left(x+2\right)\left(x+3\right)}\times \frac{x^{2}+5x+6}{2x-10})
Factor the expressions that are not already factored in \frac{\left(x^{2}-8x+15\right)\times 10x^{2}}{\left(5x^{2}+10x\right)\left(x^{2}-9\right)}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x\left(x-5\right)}{\left(x+2\right)\left(x+3\right)}\times \frac{x^{2}+5x+6}{2x-10})
Cancel out 5x\left(x-3\right) in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x\left(x-5\right)\left(x^{2}+5x+6\right)}{\left(x+2\right)\left(x+3\right)\left(2x-10\right)})
Multiply \frac{2x\left(x-5\right)}{\left(x+2\right)\left(x+3\right)} times \frac{x^{2}+5x+6}{2x-10} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x\left(x-5\right)\left(x+2\right)\left(x+3\right)}{2\left(x-5\right)\left(x+2\right)\left(x+3\right)})
Factor the expressions that are not already factored in \frac{2x\left(x-5\right)\left(x^{2}+5x+6\right)}{\left(x+2\right)\left(x+3\right)\left(2x-10\right)}.
\frac{\mathrm{d}}{\mathrm{d}x}(x)
Cancel out 2\left(x-5\right)\left(x+2\right)\left(x+3\right) in both numerator and denominator.
x^{1-1}
The derivative of ax^{n} is nax^{n-1}.
x^{0}
Subtract 1 from 1.
1
For any term t except 0, t^{0}=1.