Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x^{2}-64}{8x-40}+\frac{\left(x+8\right)^{2}}{\left(x-5\right)\left(x+8\right)}
Factor the expressions that are not already factored in \frac{x^{2}+16x+64}{x^{2}+3x-40}.
\frac{x^{2}-64}{8x-40}+\frac{x+8}{x-5}
Cancel out x+8 in both numerator and denominator.
\frac{x^{2}-64}{8\left(x-5\right)}+\frac{x+8}{x-5}
Factor 8x-40.
\frac{x^{2}-64}{8\left(x-5\right)}+\frac{8\left(x+8\right)}{8\left(x-5\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 8\left(x-5\right) and x-5 is 8\left(x-5\right). Multiply \frac{x+8}{x-5} times \frac{8}{8}.
\frac{x^{2}-64+8\left(x+8\right)}{8\left(x-5\right)}
Since \frac{x^{2}-64}{8\left(x-5\right)} and \frac{8\left(x+8\right)}{8\left(x-5\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}-64+8x+64}{8\left(x-5\right)}
Do the multiplications in x^{2}-64+8\left(x+8\right).
\frac{x^{2}+8x}{8\left(x-5\right)}
Combine like terms in x^{2}-64+8x+64.
\frac{x^{2}+8x}{8x-40}
Expand 8\left(x-5\right).
\frac{x^{2}-64}{8x-40}+\frac{\left(x+8\right)^{2}}{\left(x-5\right)\left(x+8\right)}
Factor the expressions that are not already factored in \frac{x^{2}+16x+64}{x^{2}+3x-40}.
\frac{x^{2}-64}{8x-40}+\frac{x+8}{x-5}
Cancel out x+8 in both numerator and denominator.
\frac{x^{2}-64}{8\left(x-5\right)}+\frac{x+8}{x-5}
Factor 8x-40.
\frac{x^{2}-64}{8\left(x-5\right)}+\frac{8\left(x+8\right)}{8\left(x-5\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 8\left(x-5\right) and x-5 is 8\left(x-5\right). Multiply \frac{x+8}{x-5} times \frac{8}{8}.
\frac{x^{2}-64+8\left(x+8\right)}{8\left(x-5\right)}
Since \frac{x^{2}-64}{8\left(x-5\right)} and \frac{8\left(x+8\right)}{8\left(x-5\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}-64+8x+64}{8\left(x-5\right)}
Do the multiplications in x^{2}-64+8\left(x+8\right).
\frac{x^{2}+8x}{8\left(x-5\right)}
Combine like terms in x^{2}-64+8x+64.
\frac{x^{2}+8x}{8x-40}
Expand 8\left(x-5\right).