Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{x^{2}-6x}{x^{2}+2x}+\frac{x^{2}+3x}{x^{2}+2x}\right)^{2}=\left(\sqrt{\frac{2x-3}{x+2}}\right)^{2}
Square both sides of the equation.
\left(\frac{x\left(x-6\right)}{x\left(x+2\right)}+\frac{x^{2}+3x}{x^{2}+2x}\right)^{2}=\left(\sqrt{\frac{2x-3}{x+2}}\right)^{2}
Factor the expressions that are not already factored in \frac{x^{2}-6x}{x^{2}+2x}.
\left(\frac{x-6}{x+2}+\frac{x^{2}+3x}{x^{2}+2x}\right)^{2}=\left(\sqrt{\frac{2x-3}{x+2}}\right)^{2}
Cancel out x in both numerator and denominator.
\left(\frac{x-6}{x+2}+\frac{x\left(x+3\right)}{x\left(x+2\right)}\right)^{2}=\left(\sqrt{\frac{2x-3}{x+2}}\right)^{2}
Factor the expressions that are not already factored in \frac{x^{2}+3x}{x^{2}+2x}.
\left(\frac{x-6}{x+2}+\frac{x+3}{x+2}\right)^{2}=\left(\sqrt{\frac{2x-3}{x+2}}\right)^{2}
Cancel out x in both numerator and denominator.
\left(\frac{x-6+x+3}{x+2}\right)^{2}=\left(\sqrt{\frac{2x-3}{x+2}}\right)^{2}
Since \frac{x-6}{x+2} and \frac{x+3}{x+2} have the same denominator, add them by adding their numerators.
\left(\frac{2x-3}{x+2}\right)^{2}=\left(\sqrt{\frac{2x-3}{x+2}}\right)^{2}
Combine like terms in x-6+x+3.
\frac{\left(2x-3\right)^{2}}{\left(x+2\right)^{2}}=\left(\sqrt{\frac{2x-3}{x+2}}\right)^{2}
To raise \frac{2x-3}{x+2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(2x-3\right)^{2}}{\left(x+2\right)^{2}}=\frac{2x-3}{x+2}
Calculate \sqrt{\frac{2x-3}{x+2}} to the power of 2 and get \frac{2x-3}{x+2}.
\frac{4x^{2}-12x+9}{\left(x+2\right)^{2}}=\frac{2x-3}{x+2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-3\right)^{2}.
\frac{4x^{2}-12x+9}{x^{2}+4x+4}=\frac{2x-3}{x+2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
4x^{2}-12x+9=\left(x+2\right)\left(2x-3\right)
Multiply both sides of the equation by \left(x+2\right)^{2}, the least common multiple of x^{2}+4x+4,x+2.
4x^{2}-12x+9=2x^{2}+x-6
Use the distributive property to multiply x+2 by 2x-3 and combine like terms.
4x^{2}-12x+9-2x^{2}=x-6
Subtract 2x^{2} from both sides.
2x^{2}-12x+9=x-6
Combine 4x^{2} and -2x^{2} to get 2x^{2}.
2x^{2}-12x+9-x=-6
Subtract x from both sides.
2x^{2}-13x+9=-6
Combine -12x and -x to get -13x.
2x^{2}-13x+9+6=0
Add 6 to both sides.
2x^{2}-13x+15=0
Add 9 and 6 to get 15.
a+b=-13 ab=2\times 15=30
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 2x^{2}+ax+bx+15. To find a and b, set up a system to be solved.
-1,-30 -2,-15 -3,-10 -5,-6
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 30.
-1-30=-31 -2-15=-17 -3-10=-13 -5-6=-11
Calculate the sum for each pair.
a=-10 b=-3
The solution is the pair that gives sum -13.
\left(2x^{2}-10x\right)+\left(-3x+15\right)
Rewrite 2x^{2}-13x+15 as \left(2x^{2}-10x\right)+\left(-3x+15\right).
2x\left(x-5\right)-3\left(x-5\right)
Factor out 2x in the first and -3 in the second group.
\left(x-5\right)\left(2x-3\right)
Factor out common term x-5 by using distributive property.
x=5 x=\frac{3}{2}
To find equation solutions, solve x-5=0 and 2x-3=0.
\frac{5^{2}-6\times 5}{5^{2}+2\times 5}+\frac{5^{2}+3\times 5}{5^{2}+2\times 5}=\sqrt{\frac{2\times 5-3}{5+2}}
Substitute 5 for x in the equation \frac{x^{2}-6x}{x^{2}+2x}+\frac{x^{2}+3x}{x^{2}+2x}=\sqrt{\frac{2x-3}{x+2}}.
1=1
Simplify. The value x=5 satisfies the equation.
\frac{\left(\frac{3}{2}\right)^{2}-6\times \frac{3}{2}}{\left(\frac{3}{2}\right)^{2}+2\times \frac{3}{2}}+\frac{\left(\frac{3}{2}\right)^{2}+3\times \frac{3}{2}}{\left(\frac{3}{2}\right)^{2}+2\times \frac{3}{2}}=\sqrt{\frac{2\times \frac{3}{2}-3}{\frac{3}{2}+2}}
Substitute \frac{3}{2} for x in the equation \frac{x^{2}-6x}{x^{2}+2x}+\frac{x^{2}+3x}{x^{2}+2x}=\sqrt{\frac{2x-3}{x+2}}.
0=0
Simplify. The value x=\frac{3}{2} satisfies the equation.
x=5 x=\frac{3}{2}
List all solutions of \frac{x^{2}+x^{2}+3x-6x}{x^{2}+2x}=\sqrt{\frac{2x-3}{x+2}}.