Evaluate
\frac{1}{x-2}
Expand
\frac{1}{x-2}
Graph
Share
Copied to clipboard
\frac{\left(x-3\right)\left(x-2\right)}{\left(x-2\right)^{3}}\left(\frac{4-x}{x-3}+2\right)
Factor the expressions that are not already factored in \frac{x^{2}-5x+6}{x^{3}-6x^{2}+12x-8}.
\frac{x-3}{\left(x-2\right)^{2}}\left(\frac{4-x}{x-3}+2\right)
Cancel out x-2 in both numerator and denominator.
\frac{x-3}{\left(x-2\right)^{2}}\left(\frac{4-x}{x-3}+\frac{2\left(x-3\right)}{x-3}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{x-3}{x-3}.
\frac{x-3}{\left(x-2\right)^{2}}\times \frac{4-x+2\left(x-3\right)}{x-3}
Since \frac{4-x}{x-3} and \frac{2\left(x-3\right)}{x-3} have the same denominator, add them by adding their numerators.
\frac{x-3}{\left(x-2\right)^{2}}\times \frac{4-x+2x-6}{x-3}
Do the multiplications in 4-x+2\left(x-3\right).
\frac{x-3}{\left(x-2\right)^{2}}\times \frac{-2+x}{x-3}
Combine like terms in 4-x+2x-6.
\frac{\left(x-3\right)\left(-2+x\right)}{\left(x-2\right)^{2}\left(x-3\right)}
Multiply \frac{x-3}{\left(x-2\right)^{2}} times \frac{-2+x}{x-3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{x-2}
Cancel out \left(x-3\right)\left(x-2\right) in both numerator and denominator.
\frac{\left(x-3\right)\left(x-2\right)}{\left(x-2\right)^{3}}\left(\frac{4-x}{x-3}+2\right)
Factor the expressions that are not already factored in \frac{x^{2}-5x+6}{x^{3}-6x^{2}+12x-8}.
\frac{x-3}{\left(x-2\right)^{2}}\left(\frac{4-x}{x-3}+2\right)
Cancel out x-2 in both numerator and denominator.
\frac{x-3}{\left(x-2\right)^{2}}\left(\frac{4-x}{x-3}+\frac{2\left(x-3\right)}{x-3}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{x-3}{x-3}.
\frac{x-3}{\left(x-2\right)^{2}}\times \frac{4-x+2\left(x-3\right)}{x-3}
Since \frac{4-x}{x-3} and \frac{2\left(x-3\right)}{x-3} have the same denominator, add them by adding their numerators.
\frac{x-3}{\left(x-2\right)^{2}}\times \frac{4-x+2x-6}{x-3}
Do the multiplications in 4-x+2\left(x-3\right).
\frac{x-3}{\left(x-2\right)^{2}}\times \frac{-2+x}{x-3}
Combine like terms in 4-x+2x-6.
\frac{\left(x-3\right)\left(-2+x\right)}{\left(x-2\right)^{2}\left(x-3\right)}
Multiply \frac{x-3}{\left(x-2\right)^{2}} times \frac{-2+x}{x-3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{x-2}
Cancel out \left(x-3\right)\left(x-2\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}