Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(x-3\right)\left(x-2\right)}{\left(x-2\right)^{3}}\left(\frac{4-x}{x-3}+2\right)
Factor the expressions that are not already factored in \frac{x^{2}-5x+6}{x^{3}-6x^{2}+12x-8}.
\frac{x-3}{\left(x-2\right)^{2}}\left(\frac{4-x}{x-3}+2\right)
Cancel out x-2 in both numerator and denominator.
\frac{x-3}{\left(x-2\right)^{2}}\left(\frac{4-x}{x-3}+\frac{2\left(x-3\right)}{x-3}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{x-3}{x-3}.
\frac{x-3}{\left(x-2\right)^{2}}\times \frac{4-x+2\left(x-3\right)}{x-3}
Since \frac{4-x}{x-3} and \frac{2\left(x-3\right)}{x-3} have the same denominator, add them by adding their numerators.
\frac{x-3}{\left(x-2\right)^{2}}\times \frac{4-x+2x-6}{x-3}
Do the multiplications in 4-x+2\left(x-3\right).
\frac{x-3}{\left(x-2\right)^{2}}\times \frac{-2+x}{x-3}
Combine like terms in 4-x+2x-6.
\frac{\left(x-3\right)\left(-2+x\right)}{\left(x-2\right)^{2}\left(x-3\right)}
Multiply \frac{x-3}{\left(x-2\right)^{2}} times \frac{-2+x}{x-3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{x-2}
Cancel out \left(x-3\right)\left(x-2\right) in both numerator and denominator.
\frac{\left(x-3\right)\left(x-2\right)}{\left(x-2\right)^{3}}\left(\frac{4-x}{x-3}+2\right)
Factor the expressions that are not already factored in \frac{x^{2}-5x+6}{x^{3}-6x^{2}+12x-8}.
\frac{x-3}{\left(x-2\right)^{2}}\left(\frac{4-x}{x-3}+2\right)
Cancel out x-2 in both numerator and denominator.
\frac{x-3}{\left(x-2\right)^{2}}\left(\frac{4-x}{x-3}+\frac{2\left(x-3\right)}{x-3}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{x-3}{x-3}.
\frac{x-3}{\left(x-2\right)^{2}}\times \frac{4-x+2\left(x-3\right)}{x-3}
Since \frac{4-x}{x-3} and \frac{2\left(x-3\right)}{x-3} have the same denominator, add them by adding their numerators.
\frac{x-3}{\left(x-2\right)^{2}}\times \frac{4-x+2x-6}{x-3}
Do the multiplications in 4-x+2\left(x-3\right).
\frac{x-3}{\left(x-2\right)^{2}}\times \frac{-2+x}{x-3}
Combine like terms in 4-x+2x-6.
\frac{\left(x-3\right)\left(-2+x\right)}{\left(x-2\right)^{2}\left(x-3\right)}
Multiply \frac{x-3}{\left(x-2\right)^{2}} times \frac{-2+x}{x-3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{x-2}
Cancel out \left(x-3\right)\left(x-2\right) in both numerator and denominator.