Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Share

\frac{\frac{\left(x-2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(2x-y\right)}\times \frac{x^{2}-xy}{x+y}}{\frac{x^{2}-xy}{2x-y}}
Factor the expressions that are not already factored in \frac{x^{2}-4y^{2}}{2x^{2}-5xy+2y^{2}}.
\frac{\frac{x+2y}{2x-y}\times \frac{x^{2}-xy}{x+y}}{\frac{x^{2}-xy}{2x-y}}
Cancel out x-2y in both numerator and denominator.
\frac{\frac{\left(x+2y\right)\left(x^{2}-xy\right)}{\left(2x-y\right)\left(x+y\right)}}{\frac{x^{2}-xy}{2x-y}}
Multiply \frac{x+2y}{2x-y} times \frac{x^{2}-xy}{x+y} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x+2y\right)\left(x^{2}-xy\right)\left(2x-y\right)}{\left(2x-y\right)\left(x+y\right)\left(x^{2}-xy\right)}
Divide \frac{\left(x+2y\right)\left(x^{2}-xy\right)}{\left(2x-y\right)\left(x+y\right)} by \frac{x^{2}-xy}{2x-y} by multiplying \frac{\left(x+2y\right)\left(x^{2}-xy\right)}{\left(2x-y\right)\left(x+y\right)} by the reciprocal of \frac{x^{2}-xy}{2x-y}.
\frac{x+2y}{x+y}
Cancel out \left(2x-y\right)\left(x^{2}-xy\right) in both numerator and denominator.
\frac{\frac{\left(x-2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(2x-y\right)}\times \frac{x^{2}-xy}{x+y}}{\frac{x^{2}-xy}{2x-y}}
Factor the expressions that are not already factored in \frac{x^{2}-4y^{2}}{2x^{2}-5xy+2y^{2}}.
\frac{\frac{x+2y}{2x-y}\times \frac{x^{2}-xy}{x+y}}{\frac{x^{2}-xy}{2x-y}}
Cancel out x-2y in both numerator and denominator.
\frac{\frac{\left(x+2y\right)\left(x^{2}-xy\right)}{\left(2x-y\right)\left(x+y\right)}}{\frac{x^{2}-xy}{2x-y}}
Multiply \frac{x+2y}{2x-y} times \frac{x^{2}-xy}{x+y} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x+2y\right)\left(x^{2}-xy\right)\left(2x-y\right)}{\left(2x-y\right)\left(x+y\right)\left(x^{2}-xy\right)}
Divide \frac{\left(x+2y\right)\left(x^{2}-xy\right)}{\left(2x-y\right)\left(x+y\right)} by \frac{x^{2}-xy}{2x-y} by multiplying \frac{\left(x+2y\right)\left(x^{2}-xy\right)}{\left(2x-y\right)\left(x+y\right)} by the reciprocal of \frac{x^{2}-xy}{2x-y}.
\frac{x+2y}{x+y}
Cancel out \left(2x-y\right)\left(x^{2}-xy\right) in both numerator and denominator.