Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x^{2}-4x+4}{\left(x^{2}-2x\right)\left(x-\frac{4}{x}\right)}
Express \frac{\frac{x^{2}-4x+4}{x^{2}-2x}}{x-\frac{4}{x}} as a single fraction.
\frac{x^{2}-4x+4}{\left(x^{2}-2x\right)\left(\frac{xx}{x}-\frac{4}{x}\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
\frac{x^{2}-4x+4}{\left(x^{2}-2x\right)\times \frac{xx-4}{x}}
Since \frac{xx}{x} and \frac{4}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-4x+4}{\left(x^{2}-2x\right)\times \frac{x^{2}-4}{x}}
Do the multiplications in xx-4.
\frac{x^{2}-4x+4}{\frac{\left(x^{2}-2x\right)\left(x^{2}-4\right)}{x}}
Express \left(x^{2}-2x\right)\times \frac{x^{2}-4}{x} as a single fraction.
\frac{\left(x^{2}-4x+4\right)x}{\left(x^{2}-2x\right)\left(x^{2}-4\right)}
Divide x^{2}-4x+4 by \frac{\left(x^{2}-2x\right)\left(x^{2}-4\right)}{x} by multiplying x^{2}-4x+4 by the reciprocal of \frac{\left(x^{2}-2x\right)\left(x^{2}-4\right)}{x}.
\frac{x\left(x-2\right)^{2}}{x\left(x+2\right)\left(x-2\right)^{2}}
Factor the expressions that are not already factored.
\frac{1}{x+2}
Cancel out x\left(x-2\right)^{2} in both numerator and denominator.
\frac{x^{2}-4x+4}{\left(x^{2}-2x\right)\left(x-\frac{4}{x}\right)}
Express \frac{\frac{x^{2}-4x+4}{x^{2}-2x}}{x-\frac{4}{x}} as a single fraction.
\frac{x^{2}-4x+4}{\left(x^{2}-2x\right)\left(\frac{xx}{x}-\frac{4}{x}\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
\frac{x^{2}-4x+4}{\left(x^{2}-2x\right)\times \frac{xx-4}{x}}
Since \frac{xx}{x} and \frac{4}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-4x+4}{\left(x^{2}-2x\right)\times \frac{x^{2}-4}{x}}
Do the multiplications in xx-4.
\frac{x^{2}-4x+4}{\frac{\left(x^{2}-2x\right)\left(x^{2}-4\right)}{x}}
Express \left(x^{2}-2x\right)\times \frac{x^{2}-4}{x} as a single fraction.
\frac{\left(x^{2}-4x+4\right)x}{\left(x^{2}-2x\right)\left(x^{2}-4\right)}
Divide x^{2}-4x+4 by \frac{\left(x^{2}-2x\right)\left(x^{2}-4\right)}{x} by multiplying x^{2}-4x+4 by the reciprocal of \frac{\left(x^{2}-2x\right)\left(x^{2}-4\right)}{x}.
\frac{x\left(x-2\right)^{2}}{x\left(x+2\right)\left(x-2\right)^{2}}
Factor the expressions that are not already factored.
\frac{1}{x+2}
Cancel out x\left(x-2\right)^{2} in both numerator and denominator.