Evaluate
\frac{1}{x+2}
Expand
\frac{1}{x+2}
Graph
Share
Copied to clipboard
\frac{x^{2}-4x+4}{\left(x^{2}-2x\right)\left(x-\frac{4}{x}\right)}
Express \frac{\frac{x^{2}-4x+4}{x^{2}-2x}}{x-\frac{4}{x}} as a single fraction.
\frac{x^{2}-4x+4}{\left(x^{2}-2x\right)\left(\frac{xx}{x}-\frac{4}{x}\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
\frac{x^{2}-4x+4}{\left(x^{2}-2x\right)\times \frac{xx-4}{x}}
Since \frac{xx}{x} and \frac{4}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-4x+4}{\left(x^{2}-2x\right)\times \frac{x^{2}-4}{x}}
Do the multiplications in xx-4.
\frac{x^{2}-4x+4}{\frac{\left(x^{2}-2x\right)\left(x^{2}-4\right)}{x}}
Express \left(x^{2}-2x\right)\times \frac{x^{2}-4}{x} as a single fraction.
\frac{\left(x^{2}-4x+4\right)x}{\left(x^{2}-2x\right)\left(x^{2}-4\right)}
Divide x^{2}-4x+4 by \frac{\left(x^{2}-2x\right)\left(x^{2}-4\right)}{x} by multiplying x^{2}-4x+4 by the reciprocal of \frac{\left(x^{2}-2x\right)\left(x^{2}-4\right)}{x}.
\frac{x\left(x-2\right)^{2}}{x\left(x+2\right)\left(x-2\right)^{2}}
Factor the expressions that are not already factored.
\frac{1}{x+2}
Cancel out x\left(x-2\right)^{2} in both numerator and denominator.
\frac{x^{2}-4x+4}{\left(x^{2}-2x\right)\left(x-\frac{4}{x}\right)}
Express \frac{\frac{x^{2}-4x+4}{x^{2}-2x}}{x-\frac{4}{x}} as a single fraction.
\frac{x^{2}-4x+4}{\left(x^{2}-2x\right)\left(\frac{xx}{x}-\frac{4}{x}\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
\frac{x^{2}-4x+4}{\left(x^{2}-2x\right)\times \frac{xx-4}{x}}
Since \frac{xx}{x} and \frac{4}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-4x+4}{\left(x^{2}-2x\right)\times \frac{x^{2}-4}{x}}
Do the multiplications in xx-4.
\frac{x^{2}-4x+4}{\frac{\left(x^{2}-2x\right)\left(x^{2}-4\right)}{x}}
Express \left(x^{2}-2x\right)\times \frac{x^{2}-4}{x} as a single fraction.
\frac{\left(x^{2}-4x+4\right)x}{\left(x^{2}-2x\right)\left(x^{2}-4\right)}
Divide x^{2}-4x+4 by \frac{\left(x^{2}-2x\right)\left(x^{2}-4\right)}{x} by multiplying x^{2}-4x+4 by the reciprocal of \frac{\left(x^{2}-2x\right)\left(x^{2}-4\right)}{x}.
\frac{x\left(x-2\right)^{2}}{x\left(x+2\right)\left(x-2\right)^{2}}
Factor the expressions that are not already factored.
\frac{1}{x+2}
Cancel out x\left(x-2\right)^{2} in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}