Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Share

\frac{\frac{\left(x^{2}-4\right)x}{x\left(2x^{2}+8\right)}}{\frac{4x-2x^{2}}{x}}
Multiply \frac{x^{2}-4}{x} times \frac{x}{2x^{2}+8} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{x^{2}-4}{2x^{2}+8}}{\frac{4x-2x^{2}}{x}}
Cancel out x in both numerator and denominator.
\frac{\frac{x^{2}-4}{2x^{2}+8}}{\frac{2x\left(-x+2\right)}{x}}
Factor the expressions that are not already factored in \frac{4x-2x^{2}}{x}.
\frac{\frac{x^{2}-4}{2x^{2}+8}}{2\left(-x+2\right)}
Cancel out x in both numerator and denominator.
\frac{\frac{x^{2}-4}{2x^{2}+8}}{-2x+4}
Expand the expression.
\frac{x^{2}-4}{\left(2x^{2}+8\right)\left(-2x+4\right)}
Express \frac{\frac{x^{2}-4}{2x^{2}+8}}{-2x+4} as a single fraction.
\frac{\left(x-2\right)\left(x+2\right)}{2^{2}\left(-x+2\right)\left(x^{2}+4\right)}
Factor the expressions that are not already factored.
\frac{-\left(x+2\right)\left(-x+2\right)}{2^{2}\left(-x+2\right)\left(x^{2}+4\right)}
Extract the negative sign in -2+x.
\frac{-\left(x+2\right)}{2^{2}\left(x^{2}+4\right)}
Cancel out -x+2 in both numerator and denominator.
\frac{-x-2}{4x^{2}+16}
Expand the expression.
\frac{\frac{\left(x^{2}-4\right)x}{x\left(2x^{2}+8\right)}}{\frac{4x-2x^{2}}{x}}
Multiply \frac{x^{2}-4}{x} times \frac{x}{2x^{2}+8} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{x^{2}-4}{2x^{2}+8}}{\frac{4x-2x^{2}}{x}}
Cancel out x in both numerator and denominator.
\frac{\frac{x^{2}-4}{2x^{2}+8}}{\frac{2x\left(-x+2\right)}{x}}
Factor the expressions that are not already factored in \frac{4x-2x^{2}}{x}.
\frac{\frac{x^{2}-4}{2x^{2}+8}}{2\left(-x+2\right)}
Cancel out x in both numerator and denominator.
\frac{\frac{x^{2}-4}{2x^{2}+8}}{-2x+4}
Expand the expression.
\frac{x^{2}-4}{\left(2x^{2}+8\right)\left(-2x+4\right)}
Express \frac{\frac{x^{2}-4}{2x^{2}+8}}{-2x+4} as a single fraction.
\frac{\left(x-2\right)\left(x+2\right)}{2^{2}\left(-x+2\right)\left(x^{2}+4\right)}
Factor the expressions that are not already factored.
\frac{-\left(x+2\right)\left(-x+2\right)}{2^{2}\left(-x+2\right)\left(x^{2}+4\right)}
Extract the negative sign in -2+x.
\frac{-\left(x+2\right)}{2^{2}\left(x^{2}+4\right)}
Cancel out -x+2 in both numerator and denominator.
\frac{-x-2}{4x^{2}+16}
Expand the expression.