Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(x^{2}-4\right)\left(x^{2}+x\right)}{\left(x^{2}-x-2\right)\left(3x+6\right)}
Divide \frac{x^{2}-4}{x^{2}-x-2} by \frac{3x+6}{x^{2}+x} by multiplying \frac{x^{2}-4}{x^{2}-x-2} by the reciprocal of \frac{3x+6}{x^{2}+x}.
\frac{x\left(x-2\right)\left(x+1\right)\left(x+2\right)}{3\left(x-2\right)\left(x+1\right)\left(x+2\right)}
Factor the expressions that are not already factored.
\frac{x}{3}
Cancel out \left(x-2\right)\left(x+1\right)\left(x+2\right) in both numerator and denominator.
\frac{\left(x^{2}-4\right)\left(x^{2}+x\right)}{\left(x^{2}-x-2\right)\left(3x+6\right)}
Divide \frac{x^{2}-4}{x^{2}-x-2} by \frac{3x+6}{x^{2}+x} by multiplying \frac{x^{2}-4}{x^{2}-x-2} by the reciprocal of \frac{3x+6}{x^{2}+x}.
\frac{x\left(x-2\right)\left(x+1\right)\left(x+2\right)}{3\left(x-2\right)\left(x+1\right)\left(x+2\right)}
Factor the expressions that are not already factored.
\frac{x}{3}
Cancel out \left(x-2\right)\left(x+1\right)\left(x+2\right) in both numerator and denominator.