Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x^{2}-36}{2\left(x+5\right)}+\frac{3}{6-x}
Factor 2x+10.
\frac{\left(x^{2}-36\right)\left(-x+6\right)}{2\left(x+5\right)\left(-x+6\right)}+\frac{3\times 2\left(x+5\right)}{2\left(x+5\right)\left(-x+6\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(x+5\right) and 6-x is 2\left(x+5\right)\left(-x+6\right). Multiply \frac{x^{2}-36}{2\left(x+5\right)} times \frac{-x+6}{-x+6}. Multiply \frac{3}{6-x} times \frac{2\left(x+5\right)}{2\left(x+5\right)}.
\frac{\left(x^{2}-36\right)\left(-x+6\right)+3\times 2\left(x+5\right)}{2\left(x+5\right)\left(-x+6\right)}
Since \frac{\left(x^{2}-36\right)\left(-x+6\right)}{2\left(x+5\right)\left(-x+6\right)} and \frac{3\times 2\left(x+5\right)}{2\left(x+5\right)\left(-x+6\right)} have the same denominator, add them by adding their numerators.
\frac{-x^{3}+6x^{2}+36x-216+6x+30}{2\left(x+5\right)\left(-x+6\right)}
Do the multiplications in \left(x^{2}-36\right)\left(-x+6\right)+3\times 2\left(x+5\right).
\frac{-x^{3}+6x^{2}+42x-186}{2\left(x+5\right)\left(-x+6\right)}
Combine like terms in -x^{3}+6x^{2}+36x-216+6x+30.
\frac{-x^{3}+6x^{2}+42x-186}{-2x^{2}+2x+60}
Expand 2\left(x+5\right)\left(-x+6\right).
\frac{x^{2}-36}{2\left(x+5\right)}+\frac{3}{6-x}
Factor 2x+10.
\frac{\left(x^{2}-36\right)\left(-x+6\right)}{2\left(x+5\right)\left(-x+6\right)}+\frac{3\times 2\left(x+5\right)}{2\left(x+5\right)\left(-x+6\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(x+5\right) and 6-x is 2\left(x+5\right)\left(-x+6\right). Multiply \frac{x^{2}-36}{2\left(x+5\right)} times \frac{-x+6}{-x+6}. Multiply \frac{3}{6-x} times \frac{2\left(x+5\right)}{2\left(x+5\right)}.
\frac{\left(x^{2}-36\right)\left(-x+6\right)+3\times 2\left(x+5\right)}{2\left(x+5\right)\left(-x+6\right)}
Since \frac{\left(x^{2}-36\right)\left(-x+6\right)}{2\left(x+5\right)\left(-x+6\right)} and \frac{3\times 2\left(x+5\right)}{2\left(x+5\right)\left(-x+6\right)} have the same denominator, add them by adding their numerators.
\frac{-x^{3}+6x^{2}+36x-216+6x+30}{2\left(x+5\right)\left(-x+6\right)}
Do the multiplications in \left(x^{2}-36\right)\left(-x+6\right)+3\times 2\left(x+5\right).
\frac{-x^{3}+6x^{2}+42x-186}{2\left(x+5\right)\left(-x+6\right)}
Combine like terms in -x^{3}+6x^{2}+36x-216+6x+30.
\frac{-x^{3}+6x^{2}+42x-186}{-2x^{2}+2x+60}
Expand 2\left(x+5\right)\left(-x+6\right).