Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-3x+10=0
Variable x cannot be equal to 4 since division by zero is not defined. Multiply both sides of the equation by x-4.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 10}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -3 for b, and 10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 10}}{2}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9-40}}{2}
Multiply -4 times 10.
x=\frac{-\left(-3\right)±\sqrt{-31}}{2}
Add 9 to -40.
x=\frac{-\left(-3\right)±\sqrt{31}i}{2}
Take the square root of -31.
x=\frac{3±\sqrt{31}i}{2}
The opposite of -3 is 3.
x=\frac{3+\sqrt{31}i}{2}
Now solve the equation x=\frac{3±\sqrt{31}i}{2} when ± is plus. Add 3 to i\sqrt{31}.
x=\frac{-\sqrt{31}i+3}{2}
Now solve the equation x=\frac{3±\sqrt{31}i}{2} when ± is minus. Subtract i\sqrt{31} from 3.
x=\frac{3+\sqrt{31}i}{2} x=\frac{-\sqrt{31}i+3}{2}
The equation is now solved.
x^{2}-3x+10=0
Variable x cannot be equal to 4 since division by zero is not defined. Multiply both sides of the equation by x-4.
x^{2}-3x=-10
Subtract 10 from both sides. Anything subtracted from zero gives its negation.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-10+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=-10+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=-\frac{31}{4}
Add -10 to \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=-\frac{31}{4}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{-\frac{31}{4}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{\sqrt{31}i}{2} x-\frac{3}{2}=-\frac{\sqrt{31}i}{2}
Simplify.
x=\frac{3+\sqrt{31}i}{2} x=\frac{-\sqrt{31}i+3}{2}
Add \frac{3}{2} to both sides of the equation.