Solve for x (complex solution)
x=\frac{137+\sqrt{3695}i}{26}\approx 5.269230769+2.337942756i
x=\frac{-\sqrt{3695}i+137}{26}\approx 5.269230769-2.337942756i
Graph
Share
Copied to clipboard
3\left(x^{2}-24x+144\right)+9\left(x^{2}-8x+10\right)=2x-\left(x^{2}+9x\right)+90
Multiply both sides of the equation by 18, the least common multiple of 6,2,9,18.
3x^{2}-72x+432+9\left(x^{2}-8x+10\right)=2x-\left(x^{2}+9x\right)+90
Use the distributive property to multiply 3 by x^{2}-24x+144.
3x^{2}-72x+432+9x^{2}-72x+90=2x-\left(x^{2}+9x\right)+90
Use the distributive property to multiply 9 by x^{2}-8x+10.
12x^{2}-72x+432-72x+90=2x-\left(x^{2}+9x\right)+90
Combine 3x^{2} and 9x^{2} to get 12x^{2}.
12x^{2}-144x+432+90=2x-\left(x^{2}+9x\right)+90
Combine -72x and -72x to get -144x.
12x^{2}-144x+522=2x-\left(x^{2}+9x\right)+90
Add 432 and 90 to get 522.
12x^{2}-144x+522=2x-x^{2}-9x+90
To find the opposite of x^{2}+9x, find the opposite of each term.
12x^{2}-144x+522=-7x-x^{2}+90
Combine 2x and -9x to get -7x.
12x^{2}-144x+522+7x=-x^{2}+90
Add 7x to both sides.
12x^{2}-137x+522=-x^{2}+90
Combine -144x and 7x to get -137x.
12x^{2}-137x+522+x^{2}=90
Add x^{2} to both sides.
13x^{2}-137x+522=90
Combine 12x^{2} and x^{2} to get 13x^{2}.
13x^{2}-137x+522-90=0
Subtract 90 from both sides.
13x^{2}-137x+432=0
Subtract 90 from 522 to get 432.
x=\frac{-\left(-137\right)±\sqrt{\left(-137\right)^{2}-4\times 13\times 432}}{2\times 13}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 13 for a, -137 for b, and 432 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-137\right)±\sqrt{18769-4\times 13\times 432}}{2\times 13}
Square -137.
x=\frac{-\left(-137\right)±\sqrt{18769-52\times 432}}{2\times 13}
Multiply -4 times 13.
x=\frac{-\left(-137\right)±\sqrt{18769-22464}}{2\times 13}
Multiply -52 times 432.
x=\frac{-\left(-137\right)±\sqrt{-3695}}{2\times 13}
Add 18769 to -22464.
x=\frac{-\left(-137\right)±\sqrt{3695}i}{2\times 13}
Take the square root of -3695.
x=\frac{137±\sqrt{3695}i}{2\times 13}
The opposite of -137 is 137.
x=\frac{137±\sqrt{3695}i}{26}
Multiply 2 times 13.
x=\frac{137+\sqrt{3695}i}{26}
Now solve the equation x=\frac{137±\sqrt{3695}i}{26} when ± is plus. Add 137 to i\sqrt{3695}.
x=\frac{-\sqrt{3695}i+137}{26}
Now solve the equation x=\frac{137±\sqrt{3695}i}{26} when ± is minus. Subtract i\sqrt{3695} from 137.
x=\frac{137+\sqrt{3695}i}{26} x=\frac{-\sqrt{3695}i+137}{26}
The equation is now solved.
3\left(x^{2}-24x+144\right)+9\left(x^{2}-8x+10\right)=2x-\left(x^{2}+9x\right)+90
Multiply both sides of the equation by 18, the least common multiple of 6,2,9,18.
3x^{2}-72x+432+9\left(x^{2}-8x+10\right)=2x-\left(x^{2}+9x\right)+90
Use the distributive property to multiply 3 by x^{2}-24x+144.
3x^{2}-72x+432+9x^{2}-72x+90=2x-\left(x^{2}+9x\right)+90
Use the distributive property to multiply 9 by x^{2}-8x+10.
12x^{2}-72x+432-72x+90=2x-\left(x^{2}+9x\right)+90
Combine 3x^{2} and 9x^{2} to get 12x^{2}.
12x^{2}-144x+432+90=2x-\left(x^{2}+9x\right)+90
Combine -72x and -72x to get -144x.
12x^{2}-144x+522=2x-\left(x^{2}+9x\right)+90
Add 432 and 90 to get 522.
12x^{2}-144x+522=2x-x^{2}-9x+90
To find the opposite of x^{2}+9x, find the opposite of each term.
12x^{2}-144x+522=-7x-x^{2}+90
Combine 2x and -9x to get -7x.
12x^{2}-144x+522+7x=-x^{2}+90
Add 7x to both sides.
12x^{2}-137x+522=-x^{2}+90
Combine -144x and 7x to get -137x.
12x^{2}-137x+522+x^{2}=90
Add x^{2} to both sides.
13x^{2}-137x+522=90
Combine 12x^{2} and x^{2} to get 13x^{2}.
13x^{2}-137x=90-522
Subtract 522 from both sides.
13x^{2}-137x=-432
Subtract 522 from 90 to get -432.
\frac{13x^{2}-137x}{13}=-\frac{432}{13}
Divide both sides by 13.
x^{2}-\frac{137}{13}x=-\frac{432}{13}
Dividing by 13 undoes the multiplication by 13.
x^{2}-\frac{137}{13}x+\left(-\frac{137}{26}\right)^{2}=-\frac{432}{13}+\left(-\frac{137}{26}\right)^{2}
Divide -\frac{137}{13}, the coefficient of the x term, by 2 to get -\frac{137}{26}. Then add the square of -\frac{137}{26} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{137}{13}x+\frac{18769}{676}=-\frac{432}{13}+\frac{18769}{676}
Square -\frac{137}{26} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{137}{13}x+\frac{18769}{676}=-\frac{3695}{676}
Add -\frac{432}{13} to \frac{18769}{676} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{137}{26}\right)^{2}=-\frac{3695}{676}
Factor x^{2}-\frac{137}{13}x+\frac{18769}{676}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{137}{26}\right)^{2}}=\sqrt{-\frac{3695}{676}}
Take the square root of both sides of the equation.
x-\frac{137}{26}=\frac{\sqrt{3695}i}{26} x-\frac{137}{26}=-\frac{\sqrt{3695}i}{26}
Simplify.
x=\frac{137+\sqrt{3695}i}{26} x=\frac{-\sqrt{3695}i+137}{26}
Add \frac{137}{26} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}