Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(x-4\right)\left(x+2\right)}{\left(x-4\right)\left(x-2\right)\left(x+2\right)}+\frac{x^{2}+4x-32}{x^{2}-16}+\frac{24}{x^{2}+2x-8}
Factor the expressions that are not already factored in \frac{x^{2}-2x-8}{x^{3}-4x^{2}-4x+16}.
\frac{1}{x-2}+\frac{x^{2}+4x-32}{x^{2}-16}+\frac{24}{x^{2}+2x-8}
Cancel out \left(x-4\right)\left(x+2\right) in both numerator and denominator.
\frac{1}{x-2}+\frac{\left(x-4\right)\left(x+8\right)}{\left(x-4\right)\left(x+4\right)}+\frac{24}{x^{2}+2x-8}
Factor the expressions that are not already factored in \frac{x^{2}+4x-32}{x^{2}-16}.
\frac{1}{x-2}+\frac{x+8}{x+4}+\frac{24}{x^{2}+2x-8}
Cancel out x-4 in both numerator and denominator.
\frac{x+4}{\left(x-2\right)\left(x+4\right)}+\frac{\left(x+8\right)\left(x-2\right)}{\left(x-2\right)\left(x+4\right)}+\frac{24}{x^{2}+2x-8}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2 and x+4 is \left(x-2\right)\left(x+4\right). Multiply \frac{1}{x-2} times \frac{x+4}{x+4}. Multiply \frac{x+8}{x+4} times \frac{x-2}{x-2}.
\frac{x+4+\left(x+8\right)\left(x-2\right)}{\left(x-2\right)\left(x+4\right)}+\frac{24}{x^{2}+2x-8}
Since \frac{x+4}{\left(x-2\right)\left(x+4\right)} and \frac{\left(x+8\right)\left(x-2\right)}{\left(x-2\right)\left(x+4\right)} have the same denominator, add them by adding their numerators.
\frac{x+4+x^{2}-2x+8x-16}{\left(x-2\right)\left(x+4\right)}+\frac{24}{x^{2}+2x-8}
Do the multiplications in x+4+\left(x+8\right)\left(x-2\right).
\frac{7x-12+x^{2}}{\left(x-2\right)\left(x+4\right)}+\frac{24}{x^{2}+2x-8}
Combine like terms in x+4+x^{2}-2x+8x-16.
\frac{7x-12+x^{2}}{\left(x-2\right)\left(x+4\right)}+\frac{24}{\left(x-2\right)\left(x+4\right)}
Factor x^{2}+2x-8.
\frac{7x-12+x^{2}+24}{\left(x-2\right)\left(x+4\right)}
Since \frac{7x-12+x^{2}}{\left(x-2\right)\left(x+4\right)} and \frac{24}{\left(x-2\right)\left(x+4\right)} have the same denominator, add them by adding their numerators.
\frac{7x+12+x^{2}}{\left(x-2\right)\left(x+4\right)}
Combine like terms in 7x-12+x^{2}+24.
\frac{\left(x+3\right)\left(x+4\right)}{\left(x-2\right)\left(x+4\right)}
Factor the expressions that are not already factored in \frac{7x+12+x^{2}}{\left(x-2\right)\left(x+4\right)}.
\frac{x+3}{x-2}
Cancel out x+4 in both numerator and denominator.
\frac{\left(x-4\right)\left(x+2\right)}{\left(x-4\right)\left(x-2\right)\left(x+2\right)}+\frac{x^{2}+4x-32}{x^{2}-16}+\frac{24}{x^{2}+2x-8}
Factor the expressions that are not already factored in \frac{x^{2}-2x-8}{x^{3}-4x^{2}-4x+16}.
\frac{1}{x-2}+\frac{x^{2}+4x-32}{x^{2}-16}+\frac{24}{x^{2}+2x-8}
Cancel out \left(x-4\right)\left(x+2\right) in both numerator and denominator.
\frac{1}{x-2}+\frac{\left(x-4\right)\left(x+8\right)}{\left(x-4\right)\left(x+4\right)}+\frac{24}{x^{2}+2x-8}
Factor the expressions that are not already factored in \frac{x^{2}+4x-32}{x^{2}-16}.
\frac{1}{x-2}+\frac{x+8}{x+4}+\frac{24}{x^{2}+2x-8}
Cancel out x-4 in both numerator and denominator.
\frac{x+4}{\left(x-2\right)\left(x+4\right)}+\frac{\left(x+8\right)\left(x-2\right)}{\left(x-2\right)\left(x+4\right)}+\frac{24}{x^{2}+2x-8}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2 and x+4 is \left(x-2\right)\left(x+4\right). Multiply \frac{1}{x-2} times \frac{x+4}{x+4}. Multiply \frac{x+8}{x+4} times \frac{x-2}{x-2}.
\frac{x+4+\left(x+8\right)\left(x-2\right)}{\left(x-2\right)\left(x+4\right)}+\frac{24}{x^{2}+2x-8}
Since \frac{x+4}{\left(x-2\right)\left(x+4\right)} and \frac{\left(x+8\right)\left(x-2\right)}{\left(x-2\right)\left(x+4\right)} have the same denominator, add them by adding their numerators.
\frac{x+4+x^{2}-2x+8x-16}{\left(x-2\right)\left(x+4\right)}+\frac{24}{x^{2}+2x-8}
Do the multiplications in x+4+\left(x+8\right)\left(x-2\right).
\frac{7x-12+x^{2}}{\left(x-2\right)\left(x+4\right)}+\frac{24}{x^{2}+2x-8}
Combine like terms in x+4+x^{2}-2x+8x-16.
\frac{7x-12+x^{2}}{\left(x-2\right)\left(x+4\right)}+\frac{24}{\left(x-2\right)\left(x+4\right)}
Factor x^{2}+2x-8.
\frac{7x-12+x^{2}+24}{\left(x-2\right)\left(x+4\right)}
Since \frac{7x-12+x^{2}}{\left(x-2\right)\left(x+4\right)} and \frac{24}{\left(x-2\right)\left(x+4\right)} have the same denominator, add them by adding their numerators.
\frac{7x+12+x^{2}}{\left(x-2\right)\left(x+4\right)}
Combine like terms in 7x-12+x^{2}+24.
\frac{\left(x+3\right)\left(x+4\right)}{\left(x-2\right)\left(x+4\right)}
Factor the expressions that are not already factored in \frac{7x+12+x^{2}}{\left(x-2\right)\left(x+4\right)}.
\frac{x+3}{x-2}
Cancel out x+4 in both numerator and denominator.