Solve for m (complex solution)
m=-\frac{nx+3x+2n}{x-1}
x\neq 4\text{ and }x\neq 7\text{ and }x\neq 1\text{ and }x\neq 5\text{ and }x\neq -n
Solve for m
m=-\frac{nx+3x+2n}{x-1}
x\neq 7\text{ and }x\neq 4\text{ and }x\neq 1\text{ and }x\neq 5\text{ and }x\neq -n
Solve for n (complex solution)
\left\{\begin{matrix}n=-\frac{mx+3x-m}{x+2}\text{, }&x\neq 4\text{ and }x\neq 7\text{ and }x\neq 1\text{ and }x\neq 5\text{ and }x\neq m\text{ and }x\neq -2\\n\neq 2\text{, }&m=-2\text{ and }x=-2\end{matrix}\right.
Solve for n
\left\{\begin{matrix}n=-\frac{mx+3x-m}{x+2}\text{, }&x\neq 7\text{ and }x\neq 4\text{ and }x\neq 1\text{ and }x\neq 5\text{ and }x\neq m\text{ and }x\neq -2\\n\neq 2\text{, }&m=-2\text{ and }x=-2\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(x+n\right)\left(-1+x\right)^{-1}\left(-7+x\right)\times \frac{x^{2}-2x-8}{x^{2}-11x+28}=x-m
Multiply both sides of the equation by x+n.
\left(x\left(-1+x\right)^{-1}+n\left(-1+x\right)^{-1}\right)\left(-7+x\right)\times \frac{x^{2}-2x-8}{x^{2}-11x+28}=x-m
Use the distributive property to multiply x+n by \left(-1+x\right)^{-1}.
\left(-7x\left(-1+x\right)^{-1}+\left(-1+x\right)^{-1}x^{2}-7n\left(-1+x\right)^{-1}+n\left(-1+x\right)^{-1}x\right)\times \frac{x^{2}-2x-8}{x^{2}-11x+28}=x-m
Use the distributive property to multiply x\left(-1+x\right)^{-1}+n\left(-1+x\right)^{-1} by -7+x.
\left(-7x\left(-1+x\right)^{-1}+\left(-1+x\right)^{-1}x^{2}-7n\left(-1+x\right)^{-1}+n\left(-1+x\right)^{-1}x\right)\times \frac{\left(x-4\right)\left(x+2\right)}{\left(x-7\right)\left(x-4\right)}=x-m
Factor the expressions that are not already factored in \frac{x^{2}-2x-8}{x^{2}-11x+28}.
\left(-7x\left(-1+x\right)^{-1}+\left(-1+x\right)^{-1}x^{2}-7n\left(-1+x\right)^{-1}+n\left(-1+x\right)^{-1}x\right)\times \frac{x+2}{x-7}=x-m
Cancel out x-4 in both numerator and denominator.
\frac{\left(-7x\left(-1+x\right)^{-1}+\left(-1+x\right)^{-1}x^{2}-7n\left(-1+x\right)^{-1}+n\left(-1+x\right)^{-1}x\right)\left(x+2\right)}{x-7}=x-m
Express \left(-7x\left(-1+x\right)^{-1}+\left(-1+x\right)^{-1}x^{2}-7n\left(-1+x\right)^{-1}+n\left(-1+x\right)^{-1}x\right)\times \frac{x+2}{x-7} as a single fraction.
\frac{\frac{1}{x-1}\left(x-7\right)\left(x+2\right)\left(x+n\right)}{x-7}=x-m
Factor the expressions that are not already factored in \frac{\left(-7x\left(-1+x\right)^{-1}+\left(-1+x\right)^{-1}x^{2}-7n\left(-1+x\right)^{-1}+n\left(-1+x\right)^{-1}x\right)\left(x+2\right)}{x-7}.
\frac{1}{x-1}\left(x+2\right)\left(x+n\right)=x-m
Cancel out x-7 in both numerator and denominator.
\frac{1}{x-1}nx+\frac{1}{x-1}x^{2}+2\times \frac{1}{x-1}n+2\times \frac{1}{x-1}x=x-m
Expand the expression.
x-m=\frac{1}{x-1}nx+\frac{1}{x-1}x^{2}+2\times \frac{1}{x-1}n+2\times \frac{1}{x-1}x
Swap sides so that all variable terms are on the left hand side.
x-m=\frac{n}{x-1}x+\frac{1}{x-1}x^{2}+2\times \frac{1}{x-1}n+2\times \frac{1}{x-1}x
Express \frac{1}{x-1}n as a single fraction.
x-m=\frac{nx}{x-1}+\frac{1}{x-1}x^{2}+2\times \frac{1}{x-1}n+2\times \frac{1}{x-1}x
Express \frac{n}{x-1}x as a single fraction.
x-m=\frac{nx}{x-1}+\frac{x^{2}}{x-1}+2\times \frac{1}{x-1}n+2\times \frac{1}{x-1}x
Express \frac{1}{x-1}x^{2} as a single fraction.
x-m=\frac{nx}{x-1}+\frac{x^{2}}{x-1}+\frac{2}{x-1}n+2\times \frac{1}{x-1}x
Express 2\times \frac{1}{x-1} as a single fraction.
x-m=\frac{nx}{x-1}+\frac{x^{2}}{x-1}+\frac{2n}{x-1}+2\times \frac{1}{x-1}x
Express \frac{2}{x-1}n as a single fraction.
x-m=\frac{nx}{x-1}+\frac{x^{2}}{x-1}+\frac{2n}{x-1}+\frac{2}{x-1}x
Express 2\times \frac{1}{x-1} as a single fraction.
x-m=\frac{nx}{x-1}+\frac{x^{2}}{x-1}+\frac{2n}{x-1}+\frac{2x}{x-1}
Express \frac{2}{x-1}x as a single fraction.
x-m=\frac{nx+x^{2}}{x-1}+\frac{2n}{x-1}+\frac{2x}{x-1}
Since \frac{nx}{x-1} and \frac{x^{2}}{x-1} have the same denominator, add them by adding their numerators.
x-m=\frac{nx+x^{2}+2n}{x-1}+\frac{2x}{x-1}
Since \frac{nx+x^{2}}{x-1} and \frac{2n}{x-1} have the same denominator, add them by adding their numerators.
x-m=\frac{nx+x^{2}+2n+2x}{x-1}
Since \frac{nx+x^{2}+2n}{x-1} and \frac{2x}{x-1} have the same denominator, add them by adding their numerators.
x-m=\frac{2x+2n+x^{2}+xn}{x-1}
Combine like terms in nx+x^{2}+2n+2x.
-m=\frac{2x+2n+x^{2}+xn}{x-1}-x
Subtract x from both sides.
-m=\frac{2x+2n+x^{2}+xn}{x-1}-\frac{x\left(x-1\right)}{x-1}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x-1}{x-1}.
-m=\frac{2x+2n+x^{2}+xn-x\left(x-1\right)}{x-1}
Since \frac{2x+2n+x^{2}+xn}{x-1} and \frac{x\left(x-1\right)}{x-1} have the same denominator, subtract them by subtracting their numerators.
-m=\frac{2x+2n+x^{2}+xn-x^{2}+x}{x-1}
Do the multiplications in 2x+2n+x^{2}+xn-x\left(x-1\right).
-m=\frac{3x+2n+xn}{x-1}
Combine like terms in 2x+2n+x^{2}+xn-x^{2}+x.
-m\left(x-1\right)=3x+2n+xn
Multiply both sides of the equation by x-1.
-mx+m=3x+2n+xn
Use the distributive property to multiply -m by x-1.
\left(-x+1\right)m=3x+2n+xn
Combine all terms containing m.
\left(1-x\right)m=nx+3x+2n
The equation is in standard form.
\frac{\left(1-x\right)m}{1-x}=\frac{nx+3x+2n}{1-x}
Divide both sides by 1-x.
m=\frac{nx+3x+2n}{1-x}
Dividing by 1-x undoes the multiplication by 1-x.
\left(x+n\right)\left(-1+x\right)^{-1}\left(-7+x\right)\times \frac{x^{2}-2x-8}{x^{2}-11x+28}=x-m
Multiply both sides of the equation by x+n.
\left(x\left(-1+x\right)^{-1}+n\left(-1+x\right)^{-1}\right)\left(-7+x\right)\times \frac{x^{2}-2x-8}{x^{2}-11x+28}=x-m
Use the distributive property to multiply x+n by \left(-1+x\right)^{-1}.
\left(-7x\left(-1+x\right)^{-1}+\left(-1+x\right)^{-1}x^{2}-7n\left(-1+x\right)^{-1}+n\left(-1+x\right)^{-1}x\right)\times \frac{x^{2}-2x-8}{x^{2}-11x+28}=x-m
Use the distributive property to multiply x\left(-1+x\right)^{-1}+n\left(-1+x\right)^{-1} by -7+x.
\left(-7x\left(-1+x\right)^{-1}+\left(-1+x\right)^{-1}x^{2}-7n\left(-1+x\right)^{-1}+n\left(-1+x\right)^{-1}x\right)\times \frac{\left(x-4\right)\left(x+2\right)}{\left(x-7\right)\left(x-4\right)}=x-m
Factor the expressions that are not already factored in \frac{x^{2}-2x-8}{x^{2}-11x+28}.
\left(-7x\left(-1+x\right)^{-1}+\left(-1+x\right)^{-1}x^{2}-7n\left(-1+x\right)^{-1}+n\left(-1+x\right)^{-1}x\right)\times \frac{x+2}{x-7}=x-m
Cancel out x-4 in both numerator and denominator.
\frac{\left(-7x\left(-1+x\right)^{-1}+\left(-1+x\right)^{-1}x^{2}-7n\left(-1+x\right)^{-1}+n\left(-1+x\right)^{-1}x\right)\left(x+2\right)}{x-7}=x-m
Express \left(-7x\left(-1+x\right)^{-1}+\left(-1+x\right)^{-1}x^{2}-7n\left(-1+x\right)^{-1}+n\left(-1+x\right)^{-1}x\right)\times \frac{x+2}{x-7} as a single fraction.
\frac{\frac{1}{x-1}\left(x-7\right)\left(x+2\right)\left(x+n\right)}{x-7}=x-m
Factor the expressions that are not already factored in \frac{\left(-7x\left(-1+x\right)^{-1}+\left(-1+x\right)^{-1}x^{2}-7n\left(-1+x\right)^{-1}+n\left(-1+x\right)^{-1}x\right)\left(x+2\right)}{x-7}.
\frac{1}{x-1}\left(x+2\right)\left(x+n\right)=x-m
Cancel out x-7 in both numerator and denominator.
\frac{1}{x-1}nx+\frac{1}{x-1}x^{2}+2\times \frac{1}{x-1}n+2\times \frac{1}{x-1}x=x-m
Expand the expression.
x-m=\frac{1}{x-1}nx+\frac{1}{x-1}x^{2}+2\times \frac{1}{x-1}n+2\times \frac{1}{x-1}x
Swap sides so that all variable terms are on the left hand side.
x-m=\frac{n}{x-1}x+\frac{1}{x-1}x^{2}+2\times \frac{1}{x-1}n+2\times \frac{1}{x-1}x
Express \frac{1}{x-1}n as a single fraction.
x-m=\frac{nx}{x-1}+\frac{1}{x-1}x^{2}+2\times \frac{1}{x-1}n+2\times \frac{1}{x-1}x
Express \frac{n}{x-1}x as a single fraction.
x-m=\frac{nx}{x-1}+\frac{x^{2}}{x-1}+2\times \frac{1}{x-1}n+2\times \frac{1}{x-1}x
Express \frac{1}{x-1}x^{2} as a single fraction.
x-m=\frac{nx}{x-1}+\frac{x^{2}}{x-1}+\frac{2}{x-1}n+2\times \frac{1}{x-1}x
Express 2\times \frac{1}{x-1} as a single fraction.
x-m=\frac{nx}{x-1}+\frac{x^{2}}{x-1}+\frac{2n}{x-1}+2\times \frac{1}{x-1}x
Express \frac{2}{x-1}n as a single fraction.
x-m=\frac{nx}{x-1}+\frac{x^{2}}{x-1}+\frac{2n}{x-1}+\frac{2}{x-1}x
Express 2\times \frac{1}{x-1} as a single fraction.
x-m=\frac{nx}{x-1}+\frac{x^{2}}{x-1}+\frac{2n}{x-1}+\frac{2x}{x-1}
Express \frac{2}{x-1}x as a single fraction.
x-m=\frac{nx+x^{2}}{x-1}+\frac{2n}{x-1}+\frac{2x}{x-1}
Since \frac{nx}{x-1} and \frac{x^{2}}{x-1} have the same denominator, add them by adding their numerators.
x-m=\frac{nx+x^{2}+2n}{x-1}+\frac{2x}{x-1}
Since \frac{nx+x^{2}}{x-1} and \frac{2n}{x-1} have the same denominator, add them by adding their numerators.
x-m=\frac{nx+x^{2}+2n+2x}{x-1}
Since \frac{nx+x^{2}+2n}{x-1} and \frac{2x}{x-1} have the same denominator, add them by adding their numerators.
x-m=\frac{2x+2n+x^{2}+xn}{x-1}
Combine like terms in nx+x^{2}+2n+2x.
-m=\frac{2x+2n+x^{2}+xn}{x-1}-x
Subtract x from both sides.
-m=\frac{2x+2n+x^{2}+xn}{x-1}-\frac{x\left(x-1\right)}{x-1}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x-1}{x-1}.
-m=\frac{2x+2n+x^{2}+xn-x\left(x-1\right)}{x-1}
Since \frac{2x+2n+x^{2}+xn}{x-1} and \frac{x\left(x-1\right)}{x-1} have the same denominator, subtract them by subtracting their numerators.
-m=\frac{2x+2n+x^{2}+xn-x^{2}+x}{x-1}
Do the multiplications in 2x+2n+x^{2}+xn-x\left(x-1\right).
-m=\frac{3x+2n+xn}{x-1}
Combine like terms in 2x+2n+x^{2}+xn-x^{2}+x.
-m\left(x-1\right)=3x+2n+xn
Multiply both sides of the equation by x-1.
-mx+m=3x+2n+xn
Use the distributive property to multiply -m by x-1.
\left(-x+1\right)m=3x+2n+xn
Combine all terms containing m.
\left(1-x\right)m=nx+3x+2n
The equation is in standard form.
\frac{\left(1-x\right)m}{1-x}=\frac{nx+3x+2n}{1-x}
Divide both sides by 1-x.
m=\frac{nx+3x+2n}{1-x}
Dividing by 1-x undoes the multiplication by 1-x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}