Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x^{2}-2x-24}{\left(x+3\right)\left(x+8\right)}+\frac{x^{2}-3x-28}{\left(x+5\right)\left(x+8\right)}
Factor x^{2}+11x+24. Factor x^{2}+13x+40.
\frac{\left(x^{2}-2x-24\right)\left(x+5\right)}{\left(x+3\right)\left(x+5\right)\left(x+8\right)}+\frac{\left(x^{2}-3x-28\right)\left(x+3\right)}{\left(x+3\right)\left(x+5\right)\left(x+8\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+3\right)\left(x+8\right) and \left(x+5\right)\left(x+8\right) is \left(x+3\right)\left(x+5\right)\left(x+8\right). Multiply \frac{x^{2}-2x-24}{\left(x+3\right)\left(x+8\right)} times \frac{x+5}{x+5}. Multiply \frac{x^{2}-3x-28}{\left(x+5\right)\left(x+8\right)} times \frac{x+3}{x+3}.
\frac{\left(x^{2}-2x-24\right)\left(x+5\right)+\left(x^{2}-3x-28\right)\left(x+3\right)}{\left(x+3\right)\left(x+5\right)\left(x+8\right)}
Since \frac{\left(x^{2}-2x-24\right)\left(x+5\right)}{\left(x+3\right)\left(x+5\right)\left(x+8\right)} and \frac{\left(x^{2}-3x-28\right)\left(x+3\right)}{\left(x+3\right)\left(x+5\right)\left(x+8\right)} have the same denominator, add them by adding their numerators.
\frac{x^{3}+5x^{2}-2x^{2}-10x-24x-120+x^{3}+3x^{2}-3x^{2}-9x-28x-84}{\left(x+3\right)\left(x+5\right)\left(x+8\right)}
Do the multiplications in \left(x^{2}-2x-24\right)\left(x+5\right)+\left(x^{2}-3x-28\right)\left(x+3\right).
\frac{2x^{3}+3x^{2}-71x-204}{\left(x+3\right)\left(x+5\right)\left(x+8\right)}
Combine like terms in x^{3}+5x^{2}-2x^{2}-10x-24x-120+x^{3}+3x^{2}-3x^{2}-9x-28x-84.
\frac{2x^{3}+3x^{2}-71x-204}{x^{3}+16x^{2}+79x+120}
Expand \left(x+3\right)\left(x+5\right)\left(x+8\right).
\frac{x^{2}-2x-24}{\left(x+3\right)\left(x+8\right)}+\frac{x^{2}-3x-28}{\left(x+5\right)\left(x+8\right)}
Factor x^{2}+11x+24. Factor x^{2}+13x+40.
\frac{\left(x^{2}-2x-24\right)\left(x+5\right)}{\left(x+3\right)\left(x+5\right)\left(x+8\right)}+\frac{\left(x^{2}-3x-28\right)\left(x+3\right)}{\left(x+3\right)\left(x+5\right)\left(x+8\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+3\right)\left(x+8\right) and \left(x+5\right)\left(x+8\right) is \left(x+3\right)\left(x+5\right)\left(x+8\right). Multiply \frac{x^{2}-2x-24}{\left(x+3\right)\left(x+8\right)} times \frac{x+5}{x+5}. Multiply \frac{x^{2}-3x-28}{\left(x+5\right)\left(x+8\right)} times \frac{x+3}{x+3}.
\frac{\left(x^{2}-2x-24\right)\left(x+5\right)+\left(x^{2}-3x-28\right)\left(x+3\right)}{\left(x+3\right)\left(x+5\right)\left(x+8\right)}
Since \frac{\left(x^{2}-2x-24\right)\left(x+5\right)}{\left(x+3\right)\left(x+5\right)\left(x+8\right)} and \frac{\left(x^{2}-3x-28\right)\left(x+3\right)}{\left(x+3\right)\left(x+5\right)\left(x+8\right)} have the same denominator, add them by adding their numerators.
\frac{x^{3}+5x^{2}-2x^{2}-10x-24x-120+x^{3}+3x^{2}-3x^{2}-9x-28x-84}{\left(x+3\right)\left(x+5\right)\left(x+8\right)}
Do the multiplications in \left(x^{2}-2x-24\right)\left(x+5\right)+\left(x^{2}-3x-28\right)\left(x+3\right).
\frac{2x^{3}+3x^{2}-71x-204}{\left(x+3\right)\left(x+5\right)\left(x+8\right)}
Combine like terms in x^{3}+5x^{2}-2x^{2}-10x-24x-120+x^{3}+3x^{2}-3x^{2}-9x-28x-84.
\frac{2x^{3}+3x^{2}-71x-204}{x^{3}+16x^{2}+79x+120}
Expand \left(x+3\right)\left(x+5\right)\left(x+8\right).