Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x^{2}-18}{\left(x+2\right)\left(x+4\right)}-\frac{x-5}{x+2}
Factor x^{2}+6x+8.
\frac{x^{2}-18}{\left(x+2\right)\left(x+4\right)}-\frac{\left(x-5\right)\left(x+4\right)}{\left(x+2\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+2\right)\left(x+4\right) and x+2 is \left(x+2\right)\left(x+4\right). Multiply \frac{x-5}{x+2} times \frac{x+4}{x+4}.
\frac{x^{2}-18-\left(x-5\right)\left(x+4\right)}{\left(x+2\right)\left(x+4\right)}
Since \frac{x^{2}-18}{\left(x+2\right)\left(x+4\right)} and \frac{\left(x-5\right)\left(x+4\right)}{\left(x+2\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-18-x^{2}-4x+5x+20}{\left(x+2\right)\left(x+4\right)}
Do the multiplications in x^{2}-18-\left(x-5\right)\left(x+4\right).
\frac{2+x}{\left(x+2\right)\left(x+4\right)}
Combine like terms in x^{2}-18-x^{2}-4x+5x+20.
\frac{1}{x+4}
Cancel out x+2 in both numerator and denominator.
\frac{x^{2}-18}{\left(x+2\right)\left(x+4\right)}-\frac{x-5}{x+2}
Factor x^{2}+6x+8.
\frac{x^{2}-18}{\left(x+2\right)\left(x+4\right)}-\frac{\left(x-5\right)\left(x+4\right)}{\left(x+2\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+2\right)\left(x+4\right) and x+2 is \left(x+2\right)\left(x+4\right). Multiply \frac{x-5}{x+2} times \frac{x+4}{x+4}.
\frac{x^{2}-18-\left(x-5\right)\left(x+4\right)}{\left(x+2\right)\left(x+4\right)}
Since \frac{x^{2}-18}{\left(x+2\right)\left(x+4\right)} and \frac{\left(x-5\right)\left(x+4\right)}{\left(x+2\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-18-x^{2}-4x+5x+20}{\left(x+2\right)\left(x+4\right)}
Do the multiplications in x^{2}-18-\left(x-5\right)\left(x+4\right).
\frac{2+x}{\left(x+2\right)\left(x+4\right)}
Combine like terms in x^{2}-18-x^{2}-4x+5x+20.
\frac{1}{x+4}
Cancel out x+2 in both numerator and denominator.