Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Share

\frac{\frac{\left(x^{2}-16\right)\left(2x\left(x-9\right)+3\left(x-9\right)\right)}{\left(x^{2}-9\right)\left(2x^{2}-11x+12\right)}}{\frac{4x+6}{x+9}}
Multiply \frac{x^{2}-16}{x^{2}-9} times \frac{2x\left(x-9\right)+3\left(x-9\right)}{2x^{2}-11x+12} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x^{2}-16\right)\left(2x\left(x-9\right)+3\left(x-9\right)\right)\left(x+9\right)}{\left(x^{2}-9\right)\left(2x^{2}-11x+12\right)\left(4x+6\right)}
Divide \frac{\left(x^{2}-16\right)\left(2x\left(x-9\right)+3\left(x-9\right)\right)}{\left(x^{2}-9\right)\left(2x^{2}-11x+12\right)} by \frac{4x+6}{x+9} by multiplying \frac{\left(x^{2}-16\right)\left(2x\left(x-9\right)+3\left(x-9\right)\right)}{\left(x^{2}-9\right)\left(2x^{2}-11x+12\right)} by the reciprocal of \frac{4x+6}{x+9}.
\frac{\left(x-9\right)\left(x-4\right)\left(x+4\right)\left(x+9\right)\left(2x+3\right)}{2\left(x-4\right)\left(x-3\right)\left(2x-3\right)\left(x+3\right)\left(2x+3\right)}
Factor the expressions that are not already factored.
\frac{\left(x-9\right)\left(x+4\right)\left(x+9\right)}{2\left(x-3\right)\left(2x-3\right)\left(x+3\right)}
Cancel out \left(x-4\right)\left(2x+3\right) in both numerator and denominator.
\frac{x^{3}+4x^{2}-81x-324}{4x^{3}-6x^{2}-36x+54}
Expand the expression.
\frac{\frac{\left(x^{2}-16\right)\left(2x\left(x-9\right)+3\left(x-9\right)\right)}{\left(x^{2}-9\right)\left(2x^{2}-11x+12\right)}}{\frac{4x+6}{x+9}}
Multiply \frac{x^{2}-16}{x^{2}-9} times \frac{2x\left(x-9\right)+3\left(x-9\right)}{2x^{2}-11x+12} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x^{2}-16\right)\left(2x\left(x-9\right)+3\left(x-9\right)\right)\left(x+9\right)}{\left(x^{2}-9\right)\left(2x^{2}-11x+12\right)\left(4x+6\right)}
Divide \frac{\left(x^{2}-16\right)\left(2x\left(x-9\right)+3\left(x-9\right)\right)}{\left(x^{2}-9\right)\left(2x^{2}-11x+12\right)} by \frac{4x+6}{x+9} by multiplying \frac{\left(x^{2}-16\right)\left(2x\left(x-9\right)+3\left(x-9\right)\right)}{\left(x^{2}-9\right)\left(2x^{2}-11x+12\right)} by the reciprocal of \frac{4x+6}{x+9}.
\frac{\left(x-9\right)\left(x-4\right)\left(x+4\right)\left(x+9\right)\left(2x+3\right)}{2\left(x-4\right)\left(x-3\right)\left(2x-3\right)\left(x+3\right)\left(2x+3\right)}
Factor the expressions that are not already factored.
\frac{\left(x-9\right)\left(x+4\right)\left(x+9\right)}{2\left(x-3\right)\left(2x-3\right)\left(x+3\right)}
Cancel out \left(x-4\right)\left(2x+3\right) in both numerator and denominator.
\frac{x^{3}+4x^{2}-81x-324}{4x^{3}-6x^{2}-36x+54}
Expand the expression.