Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Share

\frac{\frac{\left(x-8\right)\left(x-7\right)}{2x\left(x-7\right)^{2}}\times \frac{-3}{64-x^{2}}}{\frac{1-x}{x^{2}-8x+7}}
Factor the expressions that are not already factored in \frac{x^{2}-15x+56}{2x^{3}-28x^{2}+98x}.
\frac{\frac{x-8}{2x\left(x-7\right)}\times \frac{-3}{64-x^{2}}}{\frac{1-x}{x^{2}-8x+7}}
Cancel out x-7 in both numerator and denominator.
\frac{\frac{\left(x-8\right)\left(-3\right)}{2x\left(x-7\right)\left(64-x^{2}\right)}}{\frac{1-x}{x^{2}-8x+7}}
Multiply \frac{x-8}{2x\left(x-7\right)} times \frac{-3}{64-x^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{\left(x-8\right)\left(-3\right)}{2x\left(x-7\right)\left(64-x^{2}\right)}}{\frac{-x+1}{\left(x-7\right)\left(x-1\right)}}
Factor the expressions that are not already factored in \frac{1-x}{x^{2}-8x+7}.
\frac{\frac{\left(x-8\right)\left(-3\right)}{2x\left(x-7\right)\left(64-x^{2}\right)}}{\frac{-\left(x-1\right)}{\left(x-7\right)\left(x-1\right)}}
Extract the negative sign in 1-x.
\frac{\frac{\left(x-8\right)\left(-3\right)}{2x\left(x-7\right)\left(64-x^{2}\right)}}{\frac{-1}{x-7}}
Cancel out x-1 in both numerator and denominator.
\frac{\left(x-8\right)\left(-3\right)\left(x-7\right)}{2x\left(x-7\right)\left(64-x^{2}\right)\left(-1\right)}
Divide \frac{\left(x-8\right)\left(-3\right)}{2x\left(x-7\right)\left(64-x^{2}\right)} by \frac{-1}{x-7} by multiplying \frac{\left(x-8\right)\left(-3\right)}{2x\left(x-7\right)\left(64-x^{2}\right)} by the reciprocal of \frac{-1}{x-7}.
\frac{-3\left(x-8\right)}{-2x\left(-x^{2}+64\right)}
Cancel out x-7 in both numerator and denominator.
\frac{-3\left(x-8\right)}{-2x\left(x-8\right)\left(-x-8\right)}
Factor the expressions that are not already factored.
\frac{-3}{-2x\left(-x-8\right)}
Cancel out x-8 in both numerator and denominator.
\frac{-3}{2x^{2}+16x}
Expand the expression.
\frac{\frac{\left(x-8\right)\left(x-7\right)}{2x\left(x-7\right)^{2}}\times \frac{-3}{64-x^{2}}}{\frac{1-x}{x^{2}-8x+7}}
Factor the expressions that are not already factored in \frac{x^{2}-15x+56}{2x^{3}-28x^{2}+98x}.
\frac{\frac{x-8}{2x\left(x-7\right)}\times \frac{-3}{64-x^{2}}}{\frac{1-x}{x^{2}-8x+7}}
Cancel out x-7 in both numerator and denominator.
\frac{\frac{\left(x-8\right)\left(-3\right)}{2x\left(x-7\right)\left(64-x^{2}\right)}}{\frac{1-x}{x^{2}-8x+7}}
Multiply \frac{x-8}{2x\left(x-7\right)} times \frac{-3}{64-x^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{\left(x-8\right)\left(-3\right)}{2x\left(x-7\right)\left(64-x^{2}\right)}}{\frac{-x+1}{\left(x-7\right)\left(x-1\right)}}
Factor the expressions that are not already factored in \frac{1-x}{x^{2}-8x+7}.
\frac{\frac{\left(x-8\right)\left(-3\right)}{2x\left(x-7\right)\left(64-x^{2}\right)}}{\frac{-\left(x-1\right)}{\left(x-7\right)\left(x-1\right)}}
Extract the negative sign in 1-x.
\frac{\frac{\left(x-8\right)\left(-3\right)}{2x\left(x-7\right)\left(64-x^{2}\right)}}{\frac{-1}{x-7}}
Cancel out x-1 in both numerator and denominator.
\frac{\left(x-8\right)\left(-3\right)\left(x-7\right)}{2x\left(x-7\right)\left(64-x^{2}\right)\left(-1\right)}
Divide \frac{\left(x-8\right)\left(-3\right)}{2x\left(x-7\right)\left(64-x^{2}\right)} by \frac{-1}{x-7} by multiplying \frac{\left(x-8\right)\left(-3\right)}{2x\left(x-7\right)\left(64-x^{2}\right)} by the reciprocal of \frac{-1}{x-7}.
\frac{-3\left(x-8\right)}{-2x\left(-x^{2}+64\right)}
Cancel out x-7 in both numerator and denominator.
\frac{-3\left(x-8\right)}{-2x\left(x-8\right)\left(-x-8\right)}
Factor the expressions that are not already factored.
\frac{-3}{-2x\left(-x-8\right)}
Cancel out x-8 in both numerator and denominator.
\frac{-3}{2x^{2}+16x}
Expand the expression.