Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

17\left(x^{2}-14x+41\right)=3\left(x-7\right)\left(x+7\right)
Variable x cannot be equal to any of the values -7,7 since division by zero is not defined. Multiply both sides of the equation by 17\left(x-7\right)\left(x+7\right), the least common multiple of x^{2}-49,17.
17x^{2}-238x+697=3\left(x-7\right)\left(x+7\right)
Use the distributive property to multiply 17 by x^{2}-14x+41.
17x^{2}-238x+697=\left(3x-21\right)\left(x+7\right)
Use the distributive property to multiply 3 by x-7.
17x^{2}-238x+697=3x^{2}-147
Use the distributive property to multiply 3x-21 by x+7 and combine like terms.
17x^{2}-238x+697-3x^{2}=-147
Subtract 3x^{2} from both sides.
14x^{2}-238x+697=-147
Combine 17x^{2} and -3x^{2} to get 14x^{2}.
14x^{2}-238x+697+147=0
Add 147 to both sides.
14x^{2}-238x+844=0
Add 697 and 147 to get 844.
x=\frac{-\left(-238\right)±\sqrt{\left(-238\right)^{2}-4\times 14\times 844}}{2\times 14}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 14 for a, -238 for b, and 844 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-238\right)±\sqrt{56644-4\times 14\times 844}}{2\times 14}
Square -238.
x=\frac{-\left(-238\right)±\sqrt{56644-56\times 844}}{2\times 14}
Multiply -4 times 14.
x=\frac{-\left(-238\right)±\sqrt{56644-47264}}{2\times 14}
Multiply -56 times 844.
x=\frac{-\left(-238\right)±\sqrt{9380}}{2\times 14}
Add 56644 to -47264.
x=\frac{-\left(-238\right)±2\sqrt{2345}}{2\times 14}
Take the square root of 9380.
x=\frac{238±2\sqrt{2345}}{2\times 14}
The opposite of -238 is 238.
x=\frac{238±2\sqrt{2345}}{28}
Multiply 2 times 14.
x=\frac{2\sqrt{2345}+238}{28}
Now solve the equation x=\frac{238±2\sqrt{2345}}{28} when ± is plus. Add 238 to 2\sqrt{2345}.
x=\frac{\sqrt{2345}}{14}+\frac{17}{2}
Divide 238+2\sqrt{2345} by 28.
x=\frac{238-2\sqrt{2345}}{28}
Now solve the equation x=\frac{238±2\sqrt{2345}}{28} when ± is minus. Subtract 2\sqrt{2345} from 238.
x=-\frac{\sqrt{2345}}{14}+\frac{17}{2}
Divide 238-2\sqrt{2345} by 28.
x=\frac{\sqrt{2345}}{14}+\frac{17}{2} x=-\frac{\sqrt{2345}}{14}+\frac{17}{2}
The equation is now solved.
17\left(x^{2}-14x+41\right)=3\left(x-7\right)\left(x+7\right)
Variable x cannot be equal to any of the values -7,7 since division by zero is not defined. Multiply both sides of the equation by 17\left(x-7\right)\left(x+7\right), the least common multiple of x^{2}-49,17.
17x^{2}-238x+697=3\left(x-7\right)\left(x+7\right)
Use the distributive property to multiply 17 by x^{2}-14x+41.
17x^{2}-238x+697=\left(3x-21\right)\left(x+7\right)
Use the distributive property to multiply 3 by x-7.
17x^{2}-238x+697=3x^{2}-147
Use the distributive property to multiply 3x-21 by x+7 and combine like terms.
17x^{2}-238x+697-3x^{2}=-147
Subtract 3x^{2} from both sides.
14x^{2}-238x+697=-147
Combine 17x^{2} and -3x^{2} to get 14x^{2}.
14x^{2}-238x=-147-697
Subtract 697 from both sides.
14x^{2}-238x=-844
Subtract 697 from -147 to get -844.
\frac{14x^{2}-238x}{14}=-\frac{844}{14}
Divide both sides by 14.
x^{2}+\left(-\frac{238}{14}\right)x=-\frac{844}{14}
Dividing by 14 undoes the multiplication by 14.
x^{2}-17x=-\frac{844}{14}
Divide -238 by 14.
x^{2}-17x=-\frac{422}{7}
Reduce the fraction \frac{-844}{14} to lowest terms by extracting and canceling out 2.
x^{2}-17x+\left(-\frac{17}{2}\right)^{2}=-\frac{422}{7}+\left(-\frac{17}{2}\right)^{2}
Divide -17, the coefficient of the x term, by 2 to get -\frac{17}{2}. Then add the square of -\frac{17}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-17x+\frac{289}{4}=-\frac{422}{7}+\frac{289}{4}
Square -\frac{17}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-17x+\frac{289}{4}=\frac{335}{28}
Add -\frac{422}{7} to \frac{289}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{17}{2}\right)^{2}=\frac{335}{28}
Factor x^{2}-17x+\frac{289}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{17}{2}\right)^{2}}=\sqrt{\frac{335}{28}}
Take the square root of both sides of the equation.
x-\frac{17}{2}=\frac{\sqrt{2345}}{14} x-\frac{17}{2}=-\frac{\sqrt{2345}}{14}
Simplify.
x=\frac{\sqrt{2345}}{14}+\frac{17}{2} x=-\frac{\sqrt{2345}}{14}+\frac{17}{2}
Add \frac{17}{2} to both sides of the equation.