Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(x^{2}-10\right)\left(x+\sqrt{10}\right)}{\left(x-\sqrt{10}\right)\left(x+\sqrt{10}\right)}
Rationalize the denominator of \frac{x^{2}-10}{x-\sqrt{10}} by multiplying numerator and denominator by x+\sqrt{10}.
\frac{\left(x^{2}-10\right)\left(x+\sqrt{10}\right)}{x^{2}-\left(\sqrt{10}\right)^{2}}
Consider \left(x-\sqrt{10}\right)\left(x+\sqrt{10}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(x^{2}-10\right)\left(x+\sqrt{10}\right)}{x^{2}-10}
The square of \sqrt{10} is 10.
x+\sqrt{10}
Cancel out x^{2}-10 in both numerator and denominator.