Solve for x
x = \frac{190}{3} = 63\frac{1}{3} \approx 63.333333333
Graph
Share
Copied to clipboard
7\left(x^{2}-\left(x+5\right)\left(x-5\right)\right)=3\left(x-5\right)
Variable x cannot be equal to 5 since division by zero is not defined. Multiply both sides of the equation by 7\left(x-5\right), the least common multiple of x-5,7.
7\left(x^{2}-\left(x^{2}-25\right)\right)=3\left(x-5\right)
Consider \left(x+5\right)\left(x-5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 5.
7\left(x^{2}-x^{2}+25\right)=3\left(x-5\right)
To find the opposite of x^{2}-25, find the opposite of each term.
7\times 25=3\left(x-5\right)
Combine x^{2} and -x^{2} to get 0.
175=3\left(x-5\right)
Multiply 7 and 25 to get 175.
175=3x-15
Use the distributive property to multiply 3 by x-5.
3x-15=175
Swap sides so that all variable terms are on the left hand side.
3x=175+15
Add 15 to both sides.
3x=190
Add 175 and 15 to get 190.
x=\frac{190}{3}
Divide both sides by 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}