Solve for x
x = \frac{110}{21} = 5\frac{5}{21} \approx 5.238095238
Graph
Share
Copied to clipboard
x^{2}=\left(x-10\right)x+\left(x-10\right)\left(-11\right)
Variable x cannot be equal to 10 since division by zero is not defined. Multiply both sides of the equation by x-10.
x^{2}=x^{2}-10x+\left(x-10\right)\left(-11\right)
Use the distributive property to multiply x-10 by x.
x^{2}=x^{2}-10x-11x+110
Use the distributive property to multiply x-10 by -11.
x^{2}=x^{2}-21x+110
Combine -10x and -11x to get -21x.
x^{2}-x^{2}=-21x+110
Subtract x^{2} from both sides.
0=-21x+110
Combine x^{2} and -x^{2} to get 0.
-21x+110=0
Swap sides so that all variable terms are on the left hand side.
-21x=-110
Subtract 110 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-110}{-21}
Divide both sides by -21.
x=\frac{110}{21}
Fraction \frac{-110}{-21} can be simplified to \frac{110}{21} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}