Evaluate
\frac{x-9}{2x\left(x+7\right)}
Differentiate w.r.t. x
\frac{\left(-x-3\right)\left(x-21\right)}{2\left(x\left(x+7\right)\right)^{2}}
Graph
Share
Copied to clipboard
\frac{x^{2}\left(x^{2}-16x+63\right)}{\left(x^{2}-49\right)\times 2x^{3}}
Divide \frac{x^{2}}{x^{2}-49} by \frac{2x^{3}}{x^{2}-16x+63} by multiplying \frac{x^{2}}{x^{2}-49} by the reciprocal of \frac{2x^{3}}{x^{2}-16x+63}.
\frac{x^{2}-16x+63}{2x\left(x^{2}-49\right)}
Cancel out x^{2} in both numerator and denominator.
\frac{\left(x-9\right)\left(x-7\right)}{2x\left(x-7\right)\left(x+7\right)}
Factor the expressions that are not already factored.
\frac{x-9}{2x\left(x+7\right)}
Cancel out x-7 in both numerator and denominator.
\frac{x-9}{2x^{2}+14x}
Expand the expression.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}\left(x^{2}-16x+63\right)}{\left(x^{2}-49\right)\times 2x^{3}})
Divide \frac{x^{2}}{x^{2}-49} by \frac{2x^{3}}{x^{2}-16x+63} by multiplying \frac{x^{2}}{x^{2}-49} by the reciprocal of \frac{2x^{3}}{x^{2}-16x+63}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}-16x+63}{2x\left(x^{2}-49\right)})
Cancel out x^{2} in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x-9\right)\left(x-7\right)}{2x\left(x-7\right)\left(x+7\right)})
Factor the expressions that are not already factored in \frac{x^{2}-16x+63}{2x\left(x^{2}-49\right)}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x-9}{2x\left(x+7\right)})
Cancel out x-7 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x-9}{2x^{2}+14x})
Use the distributive property to multiply 2x by x+7.
\frac{\left(2x^{2}+14x^{1}\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-9)-\left(x^{1}-9\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{2}+14x^{1})}{\left(2x^{2}+14x^{1}\right)^{2}}
For any two differentiable functions, the derivative of the quotient of two functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the denominator squared.
\frac{\left(2x^{2}+14x^{1}\right)x^{1-1}-\left(x^{1}-9\right)\left(2\times 2x^{2-1}+14x^{1-1}\right)}{\left(2x^{2}+14x^{1}\right)^{2}}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{\left(2x^{2}+14x^{1}\right)x^{0}-\left(x^{1}-9\right)\left(4x^{1}+14x^{0}\right)}{\left(2x^{2}+14x^{1}\right)^{2}}
Simplify.
\frac{2x^{2}x^{0}+14x^{1}x^{0}-\left(x^{1}-9\right)\left(4x^{1}+14x^{0}\right)}{\left(2x^{2}+14x^{1}\right)^{2}}
Multiply 2x^{2}+14x^{1} times x^{0}.
\frac{2x^{2}x^{0}+14x^{1}x^{0}-\left(x^{1}\times 4x^{1}+x^{1}\times 14x^{0}-9\times 4x^{1}-9\times 14x^{0}\right)}{\left(2x^{2}+14x^{1}\right)^{2}}
Multiply x^{1}-9 times 4x^{1}+14x^{0}.
\frac{2x^{2}+14x^{1}-\left(4x^{1+1}+14x^{1}-9\times 4x^{1}-9\times 14x^{0}\right)}{\left(2x^{2}+14x^{1}\right)^{2}}
To multiply powers of the same base, add their exponents.
\frac{2x^{2}+14x^{1}-\left(4x^{2}+14x^{1}-36x^{1}-126x^{0}\right)}{\left(2x^{2}+14x^{1}\right)^{2}}
Simplify.
\frac{-2x^{2}+36x^{1}+126x^{0}}{\left(2x^{2}+14x^{1}\right)^{2}}
Combine like terms.
\frac{-2x^{2}+36x+126x^{0}}{\left(2x^{2}+14x\right)^{2}}
For any term t, t^{1}=t.
\frac{-2x^{2}+36x+126\times 1}{\left(2x^{2}+14x\right)^{2}}
For any term t except 0, t^{0}=1.
\frac{-2x^{2}+36x+126}{\left(2x^{2}+14x\right)^{2}}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}