Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x^{2}}{\left(x-2\right)\left(x+7\right)}-\frac{x+3}{x+7}
Factor x^{2}+5x-14.
\frac{x^{2}}{\left(x-2\right)\left(x+7\right)}-\frac{\left(x+3\right)\left(x-2\right)}{\left(x-2\right)\left(x+7\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+7\right) and x+7 is \left(x-2\right)\left(x+7\right). Multiply \frac{x+3}{x+7} times \frac{x-2}{x-2}.
\frac{x^{2}-\left(x+3\right)\left(x-2\right)}{\left(x-2\right)\left(x+7\right)}
Since \frac{x^{2}}{\left(x-2\right)\left(x+7\right)} and \frac{\left(x+3\right)\left(x-2\right)}{\left(x-2\right)\left(x+7\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-x^{2}+2x-3x+6}{\left(x-2\right)\left(x+7\right)}
Do the multiplications in x^{2}-\left(x+3\right)\left(x-2\right).
\frac{-x+6}{\left(x-2\right)\left(x+7\right)}
Combine like terms in x^{2}-x^{2}+2x-3x+6.
\frac{-x+6}{x^{2}+5x-14}
Expand \left(x-2\right)\left(x+7\right).
\frac{x^{2}}{\left(x-2\right)\left(x+7\right)}-\frac{x+3}{x+7}
Factor x^{2}+5x-14.
\frac{x^{2}}{\left(x-2\right)\left(x+7\right)}-\frac{\left(x+3\right)\left(x-2\right)}{\left(x-2\right)\left(x+7\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+7\right) and x+7 is \left(x-2\right)\left(x+7\right). Multiply \frac{x+3}{x+7} times \frac{x-2}{x-2}.
\frac{x^{2}-\left(x+3\right)\left(x-2\right)}{\left(x-2\right)\left(x+7\right)}
Since \frac{x^{2}}{\left(x-2\right)\left(x+7\right)} and \frac{\left(x+3\right)\left(x-2\right)}{\left(x-2\right)\left(x+7\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-x^{2}+2x-3x+6}{\left(x-2\right)\left(x+7\right)}
Do the multiplications in x^{2}-\left(x+3\right)\left(x-2\right).
\frac{-x+6}{\left(x-2\right)\left(x+7\right)}
Combine like terms in x^{2}-x^{2}+2x-3x+6.
\frac{-x+6}{x^{2}+5x-14}
Expand \left(x-2\right)\left(x+7\right).