Evaluate
\frac{\sqrt{2}\left(x+2\right)}{2}
Differentiate w.r.t. x
\frac{\sqrt{2}}{2} = 0.7071067811865476
Graph
Share
Copied to clipboard
\frac{x}{\sqrt{2}}+\frac{\sqrt[2]{4}}{\sqrt{2}}
Cancel out x in both numerator and denominator.
\frac{x\sqrt{2}}{\left(\sqrt{2}\right)^{2}}+\frac{\sqrt[2]{4}}{\sqrt{2}}
Rationalize the denominator of \frac{x}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{x\sqrt{2}}{2}+\frac{\sqrt[2]{4}}{\sqrt{2}}
The square of \sqrt{2} is 2.
\frac{x\sqrt{2}}{2}+\frac{2}{\sqrt{2}}
Calculate \sqrt[2]{4} and get 2.
\frac{x\sqrt{2}}{2}+\frac{2\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{2}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{x\sqrt{2}}{2}+\frac{2\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\frac{x\sqrt{2}+2\sqrt{2}}{2}
Since \frac{x\sqrt{2}}{2} and \frac{2\sqrt{2}}{2} have the same denominator, add them by adding their numerators.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}