Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{9}x^{2}-\frac{4}{3}x=-2
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\frac{1}{9}x^{2}-\frac{4}{3}x-\left(-2\right)=-2-\left(-2\right)
Add 2 to both sides of the equation.
\frac{1}{9}x^{2}-\frac{4}{3}x-\left(-2\right)=0
Subtracting -2 from itself leaves 0.
\frac{1}{9}x^{2}-\frac{4}{3}x+2=0
Subtract -2 from 0.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\left(-\frac{4}{3}\right)^{2}-4\times \frac{1}{9}\times 2}}{2\times \frac{1}{9}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{9} for a, -\frac{4}{3} for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\frac{16}{9}-4\times \frac{1}{9}\times 2}}{2\times \frac{1}{9}}
Square -\frac{4}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\frac{16}{9}-\frac{4}{9}\times 2}}{2\times \frac{1}{9}}
Multiply -4 times \frac{1}{9}.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\frac{16-8}{9}}}{2\times \frac{1}{9}}
Multiply -\frac{4}{9} times 2.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\frac{8}{9}}}{2\times \frac{1}{9}}
Add \frac{16}{9} to -\frac{8}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{4}{3}\right)±\frac{2\sqrt{2}}{3}}{2\times \frac{1}{9}}
Take the square root of \frac{8}{9}.
x=\frac{\frac{4}{3}±\frac{2\sqrt{2}}{3}}{2\times \frac{1}{9}}
The opposite of -\frac{4}{3} is \frac{4}{3}.
x=\frac{\frac{4}{3}±\frac{2\sqrt{2}}{3}}{\frac{2}{9}}
Multiply 2 times \frac{1}{9}.
x=\frac{2\sqrt{2}+4}{\frac{2}{9}\times 3}
Now solve the equation x=\frac{\frac{4}{3}±\frac{2\sqrt{2}}{3}}{\frac{2}{9}} when ± is plus. Add \frac{4}{3} to \frac{2\sqrt{2}}{3}.
x=3\sqrt{2}+6
Divide \frac{4+2\sqrt{2}}{3} by \frac{2}{9} by multiplying \frac{4+2\sqrt{2}}{3} by the reciprocal of \frac{2}{9}.
x=\frac{4-2\sqrt{2}}{\frac{2}{9}\times 3}
Now solve the equation x=\frac{\frac{4}{3}±\frac{2\sqrt{2}}{3}}{\frac{2}{9}} when ± is minus. Subtract \frac{2\sqrt{2}}{3} from \frac{4}{3}.
x=6-3\sqrt{2}
Divide \frac{4-2\sqrt{2}}{3} by \frac{2}{9} by multiplying \frac{4-2\sqrt{2}}{3} by the reciprocal of \frac{2}{9}.
x=3\sqrt{2}+6 x=6-3\sqrt{2}
The equation is now solved.
\frac{1}{9}x^{2}-\frac{4}{3}x=-2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{1}{9}x^{2}-\frac{4}{3}x}{\frac{1}{9}}=-\frac{2}{\frac{1}{9}}
Multiply both sides by 9.
x^{2}+\left(-\frac{\frac{4}{3}}{\frac{1}{9}}\right)x=-\frac{2}{\frac{1}{9}}
Dividing by \frac{1}{9} undoes the multiplication by \frac{1}{9}.
x^{2}-12x=-\frac{2}{\frac{1}{9}}
Divide -\frac{4}{3} by \frac{1}{9} by multiplying -\frac{4}{3} by the reciprocal of \frac{1}{9}.
x^{2}-12x=-18
Divide -2 by \frac{1}{9} by multiplying -2 by the reciprocal of \frac{1}{9}.
x^{2}-12x+\left(-6\right)^{2}=-18+\left(-6\right)^{2}
Divide -12, the coefficient of the x term, by 2 to get -6. Then add the square of -6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-12x+36=-18+36
Square -6.
x^{2}-12x+36=18
Add -18 to 36.
\left(x-6\right)^{2}=18
Factor x^{2}-12x+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-6\right)^{2}}=\sqrt{18}
Take the square root of both sides of the equation.
x-6=3\sqrt{2} x-6=-3\sqrt{2}
Simplify.
x=3\sqrt{2}+6 x=6-3\sqrt{2}
Add 6 to both sides of the equation.