Solve for x (complex solution)
x=\frac{-6+3\sqrt{2}i}{5}\approx -1.2+0.848528137i
x=\frac{-3\sqrt{2}i-6}{5}\approx -1.2-0.848528137i
Graph
Share
Copied to clipboard
5x^{2}-30=30\left(x+1\right)^{2}-6
Multiply both sides of the equation by 30, the least common multiple of 6,5.
5x^{2}-30=30\left(x^{2}+2x+1\right)-6
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
5x^{2}-30=30x^{2}+60x+30-6
Use the distributive property to multiply 30 by x^{2}+2x+1.
5x^{2}-30=30x^{2}+60x+24
Subtract 6 from 30 to get 24.
5x^{2}-30-30x^{2}=60x+24
Subtract 30x^{2} from both sides.
-25x^{2}-30=60x+24
Combine 5x^{2} and -30x^{2} to get -25x^{2}.
-25x^{2}-30-60x=24
Subtract 60x from both sides.
-25x^{2}-30-60x-24=0
Subtract 24 from both sides.
-25x^{2}-54-60x=0
Subtract 24 from -30 to get -54.
-25x^{2}-60x-54=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-60\right)±\sqrt{\left(-60\right)^{2}-4\left(-25\right)\left(-54\right)}}{2\left(-25\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -25 for a, -60 for b, and -54 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-60\right)±\sqrt{3600-4\left(-25\right)\left(-54\right)}}{2\left(-25\right)}
Square -60.
x=\frac{-\left(-60\right)±\sqrt{3600+100\left(-54\right)}}{2\left(-25\right)}
Multiply -4 times -25.
x=\frac{-\left(-60\right)±\sqrt{3600-5400}}{2\left(-25\right)}
Multiply 100 times -54.
x=\frac{-\left(-60\right)±\sqrt{-1800}}{2\left(-25\right)}
Add 3600 to -5400.
x=\frac{-\left(-60\right)±30\sqrt{2}i}{2\left(-25\right)}
Take the square root of -1800.
x=\frac{60±30\sqrt{2}i}{2\left(-25\right)}
The opposite of -60 is 60.
x=\frac{60±30\sqrt{2}i}{-50}
Multiply 2 times -25.
x=\frac{60+30\sqrt{2}i}{-50}
Now solve the equation x=\frac{60±30\sqrt{2}i}{-50} when ± is plus. Add 60 to 30i\sqrt{2}.
x=\frac{-3\sqrt{2}i-6}{5}
Divide 60+30i\sqrt{2} by -50.
x=\frac{-30\sqrt{2}i+60}{-50}
Now solve the equation x=\frac{60±30\sqrt{2}i}{-50} when ± is minus. Subtract 30i\sqrt{2} from 60.
x=\frac{-6+3\sqrt{2}i}{5}
Divide 60-30i\sqrt{2} by -50.
x=\frac{-3\sqrt{2}i-6}{5} x=\frac{-6+3\sqrt{2}i}{5}
The equation is now solved.
5x^{2}-30=30\left(x+1\right)^{2}-6
Multiply both sides of the equation by 30, the least common multiple of 6,5.
5x^{2}-30=30\left(x^{2}+2x+1\right)-6
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
5x^{2}-30=30x^{2}+60x+30-6
Use the distributive property to multiply 30 by x^{2}+2x+1.
5x^{2}-30=30x^{2}+60x+24
Subtract 6 from 30 to get 24.
5x^{2}-30-30x^{2}=60x+24
Subtract 30x^{2} from both sides.
-25x^{2}-30=60x+24
Combine 5x^{2} and -30x^{2} to get -25x^{2}.
-25x^{2}-30-60x=24
Subtract 60x from both sides.
-25x^{2}-60x=24+30
Add 30 to both sides.
-25x^{2}-60x=54
Add 24 and 30 to get 54.
\frac{-25x^{2}-60x}{-25}=\frac{54}{-25}
Divide both sides by -25.
x^{2}+\left(-\frac{60}{-25}\right)x=\frac{54}{-25}
Dividing by -25 undoes the multiplication by -25.
x^{2}+\frac{12}{5}x=\frac{54}{-25}
Reduce the fraction \frac{-60}{-25} to lowest terms by extracting and canceling out 5.
x^{2}+\frac{12}{5}x=-\frac{54}{25}
Divide 54 by -25.
x^{2}+\frac{12}{5}x+\left(\frac{6}{5}\right)^{2}=-\frac{54}{25}+\left(\frac{6}{5}\right)^{2}
Divide \frac{12}{5}, the coefficient of the x term, by 2 to get \frac{6}{5}. Then add the square of \frac{6}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{12}{5}x+\frac{36}{25}=\frac{-54+36}{25}
Square \frac{6}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{12}{5}x+\frac{36}{25}=-\frac{18}{25}
Add -\frac{54}{25} to \frac{36}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{6}{5}\right)^{2}=-\frac{18}{25}
Factor x^{2}+\frac{12}{5}x+\frac{36}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{6}{5}\right)^{2}}=\sqrt{-\frac{18}{25}}
Take the square root of both sides of the equation.
x+\frac{6}{5}=\frac{3\sqrt{2}i}{5} x+\frac{6}{5}=-\frac{3\sqrt{2}i}{5}
Simplify.
x=\frac{-6+3\sqrt{2}i}{5} x=\frac{-3\sqrt{2}i-6}{5}
Subtract \frac{6}{5} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}