Evaluate (complex solution)
\frac{x^{2}}{4}+y^{2}=x+y\text{ and }x+y=2\sqrt{5}
Solve for x
\left\{\begin{matrix}x=\frac{2\sqrt{10\sqrt{10\sqrt{5}-20}-40\sqrt{2\sqrt{5}-4}+85-30\sqrt{5}}}{5}+2\text{, }&y=\frac{2\sqrt{10\sqrt{5}-20}+2\sqrt{5}}{5}\\x=\frac{2\sqrt{40\sqrt{2\sqrt{5}-4}-10\sqrt{10\sqrt{5}-20}+85-30\sqrt{5}}}{5}+2\text{, }&y=\frac{-2\sqrt{10\sqrt{5}-20}+2\sqrt{5}}{5}\end{matrix}\right.
Solve for y
\left\{\begin{matrix}y=-\frac{\sqrt{40\sqrt{10\sqrt{5}-20}-160\sqrt{2\sqrt{5}-4}+120\sqrt{5}-215}}{10}+\frac{1}{2}\text{, }&x=\frac{2\sqrt{10\sqrt{5}-20}+8\sqrt{5}}{5}\\y=\frac{\sqrt{160\sqrt{2\sqrt{5}-4}-40\sqrt{10\sqrt{5}-20}+120\sqrt{5}-215}}{10}+\frac{1}{2}\text{, }&x=\frac{-2\sqrt{10\sqrt{5}-20}+8\sqrt{5}}{5}\end{matrix}\right.
Graph
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}