Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Share

\frac{x^{2}\left(x^{2}-4\right)}{\left(2-x\right)\left(x^{2}+5x\right)}\times \frac{x^{2}-25}{x^{2}-2x-10}
Divide \frac{x^{2}}{2-x} by \frac{x^{2}+5x}{x^{2}-4} by multiplying \frac{x^{2}}{2-x} by the reciprocal of \frac{x^{2}+5x}{x^{2}-4}.
\frac{\left(x-2\right)\left(x+2\right)x^{2}}{x\left(x+5\right)\left(-x+2\right)}\times \frac{x^{2}-25}{x^{2}-2x-10}
Factor the expressions that are not already factored in \frac{x^{2}\left(x^{2}-4\right)}{\left(2-x\right)\left(x^{2}+5x\right)}.
\frac{-\left(x+2\right)\left(-x+2\right)x^{2}}{x\left(x+5\right)\left(-x+2\right)}\times \frac{x^{2}-25}{x^{2}-2x-10}
Extract the negative sign in -2+x.
\frac{-x\left(x+2\right)}{x+5}\times \frac{x^{2}-25}{x^{2}-2x-10}
Cancel out x\left(-x+2\right) in both numerator and denominator.
\frac{-x\left(x+2\right)\left(x^{2}-25\right)}{\left(x+5\right)\left(x^{2}-2x-10\right)}
Multiply \frac{-x\left(x+2\right)}{x+5} times \frac{x^{2}-25}{x^{2}-2x-10} by multiplying numerator times numerator and denominator times denominator.
\frac{-x\left(x-5\right)\left(x+2\right)\left(x+5\right)}{\left(x+5\right)\left(x-\left(\sqrt{11}+1\right)\right)\left(x-\left(-\sqrt{11}+1\right)\right)}
Factor the expressions that are not already factored.
\frac{-x\left(x-5\right)\left(x+2\right)}{\left(x-\left(\sqrt{11}+1\right)\right)\left(x-\left(-\sqrt{11}+1\right)\right)}
Cancel out x+5 in both numerator and denominator.
\frac{-x^{3}+3x^{2}+10x}{x^{2}-2x-10}
Expand the expression.
\frac{x^{2}\left(x^{2}-4\right)}{\left(2-x\right)\left(x^{2}+5x\right)}\times \frac{x^{2}-25}{x^{2}-2x-10}
Divide \frac{x^{2}}{2-x} by \frac{x^{2}+5x}{x^{2}-4} by multiplying \frac{x^{2}}{2-x} by the reciprocal of \frac{x^{2}+5x}{x^{2}-4}.
\frac{\left(x-2\right)\left(x+2\right)x^{2}}{x\left(x+5\right)\left(-x+2\right)}\times \frac{x^{2}-25}{x^{2}-2x-10}
Factor the expressions that are not already factored in \frac{x^{2}\left(x^{2}-4\right)}{\left(2-x\right)\left(x^{2}+5x\right)}.
\frac{-\left(x+2\right)\left(-x+2\right)x^{2}}{x\left(x+5\right)\left(-x+2\right)}\times \frac{x^{2}-25}{x^{2}-2x-10}
Extract the negative sign in -2+x.
\frac{-x\left(x+2\right)}{x+5}\times \frac{x^{2}-25}{x^{2}-2x-10}
Cancel out x\left(-x+2\right) in both numerator and denominator.
\frac{-x\left(x+2\right)\left(x^{2}-25\right)}{\left(x+5\right)\left(x^{2}-2x-10\right)}
Multiply \frac{-x\left(x+2\right)}{x+5} times \frac{x^{2}-25}{x^{2}-2x-10} by multiplying numerator times numerator and denominator times denominator.
\frac{-x\left(x-5\right)\left(x+2\right)\left(x+5\right)}{\left(x+5\right)\left(x-\left(\sqrt{11}+1\right)\right)\left(x-\left(-\sqrt{11}+1\right)\right)}
Factor the expressions that are not already factored.
\frac{-x\left(x-5\right)\left(x+2\right)}{\left(x-\left(\sqrt{11}+1\right)\right)\left(x-\left(-\sqrt{11}+1\right)\right)}
Cancel out x+5 in both numerator and denominator.
\frac{-x^{3}+3x^{2}+10x}{x^{2}-2x-10}
Expand the expression.