Evaluate
\frac{x\left(x-5\right)\left(x+2\right)}{10+2x-x^{2}}
Expand
-\frac{x^{3}-3x^{2}-10x}{x^{2}-2x-10}
Graph
Share
Copied to clipboard
\frac{x^{2}\left(x^{2}-4\right)}{\left(2-x\right)\left(x^{2}+5x\right)}\times \frac{x^{2}-25}{x^{2}-2x-10}
Divide \frac{x^{2}}{2-x} by \frac{x^{2}+5x}{x^{2}-4} by multiplying \frac{x^{2}}{2-x} by the reciprocal of \frac{x^{2}+5x}{x^{2}-4}.
\frac{\left(x-2\right)\left(x+2\right)x^{2}}{x\left(x+5\right)\left(-x+2\right)}\times \frac{x^{2}-25}{x^{2}-2x-10}
Factor the expressions that are not already factored in \frac{x^{2}\left(x^{2}-4\right)}{\left(2-x\right)\left(x^{2}+5x\right)}.
\frac{-\left(x+2\right)\left(-x+2\right)x^{2}}{x\left(x+5\right)\left(-x+2\right)}\times \frac{x^{2}-25}{x^{2}-2x-10}
Extract the negative sign in -2+x.
\frac{-x\left(x+2\right)}{x+5}\times \frac{x^{2}-25}{x^{2}-2x-10}
Cancel out x\left(-x+2\right) in both numerator and denominator.
\frac{-x\left(x+2\right)\left(x^{2}-25\right)}{\left(x+5\right)\left(x^{2}-2x-10\right)}
Multiply \frac{-x\left(x+2\right)}{x+5} times \frac{x^{2}-25}{x^{2}-2x-10} by multiplying numerator times numerator and denominator times denominator.
\frac{-x\left(x-5\right)\left(x+2\right)\left(x+5\right)}{\left(x+5\right)\left(x-\left(\sqrt{11}+1\right)\right)\left(x-\left(-\sqrt{11}+1\right)\right)}
Factor the expressions that are not already factored.
\frac{-x\left(x-5\right)\left(x+2\right)}{\left(x-\left(\sqrt{11}+1\right)\right)\left(x-\left(-\sqrt{11}+1\right)\right)}
Cancel out x+5 in both numerator and denominator.
\frac{-x^{3}+3x^{2}+10x}{x^{2}-2x-10}
Expand the expression.
\frac{x^{2}\left(x^{2}-4\right)}{\left(2-x\right)\left(x^{2}+5x\right)}\times \frac{x^{2}-25}{x^{2}-2x-10}
Divide \frac{x^{2}}{2-x} by \frac{x^{2}+5x}{x^{2}-4} by multiplying \frac{x^{2}}{2-x} by the reciprocal of \frac{x^{2}+5x}{x^{2}-4}.
\frac{\left(x-2\right)\left(x+2\right)x^{2}}{x\left(x+5\right)\left(-x+2\right)}\times \frac{x^{2}-25}{x^{2}-2x-10}
Factor the expressions that are not already factored in \frac{x^{2}\left(x^{2}-4\right)}{\left(2-x\right)\left(x^{2}+5x\right)}.
\frac{-\left(x+2\right)\left(-x+2\right)x^{2}}{x\left(x+5\right)\left(-x+2\right)}\times \frac{x^{2}-25}{x^{2}-2x-10}
Extract the negative sign in -2+x.
\frac{-x\left(x+2\right)}{x+5}\times \frac{x^{2}-25}{x^{2}-2x-10}
Cancel out x\left(-x+2\right) in both numerator and denominator.
\frac{-x\left(x+2\right)\left(x^{2}-25\right)}{\left(x+5\right)\left(x^{2}-2x-10\right)}
Multiply \frac{-x\left(x+2\right)}{x+5} times \frac{x^{2}-25}{x^{2}-2x-10} by multiplying numerator times numerator and denominator times denominator.
\frac{-x\left(x-5\right)\left(x+2\right)\left(x+5\right)}{\left(x+5\right)\left(x-\left(\sqrt{11}+1\right)\right)\left(x-\left(-\sqrt{11}+1\right)\right)}
Factor the expressions that are not already factored.
\frac{-x\left(x-5\right)\left(x+2\right)}{\left(x-\left(\sqrt{11}+1\right)\right)\left(x-\left(-\sqrt{11}+1\right)\right)}
Cancel out x+5 in both numerator and denominator.
\frac{-x^{3}+3x^{2}+10x}{x^{2}-2x-10}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}