Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x^{2}\left(x+1\right)}{\left(x+1\right)\left(-x+2\right)}+\frac{\left(1-x\right)^{2}\left(-x+2\right)}{\left(x+1\right)\left(-x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2-x and x+1 is \left(x+1\right)\left(-x+2\right). Multiply \frac{x^{2}}{2-x} times \frac{x+1}{x+1}. Multiply \frac{\left(1-x\right)^{2}}{x+1} times \frac{-x+2}{-x+2}.
\frac{x^{2}\left(x+1\right)+\left(1-x\right)^{2}\left(-x+2\right)}{\left(x+1\right)\left(-x+2\right)}
Since \frac{x^{2}\left(x+1\right)}{\left(x+1\right)\left(-x+2\right)} and \frac{\left(1-x\right)^{2}\left(-x+2\right)}{\left(x+1\right)\left(-x+2\right)} have the same denominator, add them by adding their numerators.
\frac{x^{3}+x^{2}+2-x+2x^{2}-4x-x^{3}+2x^{2}}{\left(x+1\right)\left(-x+2\right)}
Do the multiplications in x^{2}\left(x+1\right)+\left(1-x\right)^{2}\left(-x+2\right).
\frac{5x^{2}+2-5x}{\left(x+1\right)\left(-x+2\right)}
Combine like terms in x^{3}+x^{2}+2-x+2x^{2}-4x-x^{3}+2x^{2}.
\frac{5x^{2}+2-5x}{-x^{2}+x+2}
Expand \left(x+1\right)\left(-x+2\right).
\frac{x^{2}\left(x+1\right)}{\left(x+1\right)\left(-x+2\right)}+\frac{\left(1-x\right)^{2}\left(-x+2\right)}{\left(x+1\right)\left(-x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2-x and x+1 is \left(x+1\right)\left(-x+2\right). Multiply \frac{x^{2}}{2-x} times \frac{x+1}{x+1}. Multiply \frac{\left(1-x\right)^{2}}{x+1} times \frac{-x+2}{-x+2}.
\frac{x^{2}\left(x+1\right)+\left(1-x\right)^{2}\left(-x+2\right)}{\left(x+1\right)\left(-x+2\right)}
Since \frac{x^{2}\left(x+1\right)}{\left(x+1\right)\left(-x+2\right)} and \frac{\left(1-x\right)^{2}\left(-x+2\right)}{\left(x+1\right)\left(-x+2\right)} have the same denominator, add them by adding their numerators.
\frac{x^{3}+x^{2}+2-x+2x^{2}-4x-x^{3}+2x^{2}}{\left(x+1\right)\left(-x+2\right)}
Do the multiplications in x^{2}\left(x+1\right)+\left(1-x\right)^{2}\left(-x+2\right).
\frac{5x^{2}+2-5x}{\left(x+1\right)\left(-x+2\right)}
Combine like terms in x^{3}+x^{2}+2-x+2x^{2}-4x-x^{3}+2x^{2}.
\frac{5x^{2}+2-5x}{-x^{2}+x+2}
Expand \left(x+1\right)\left(-x+2\right).