Solve for x
x = \frac{\sqrt{41} - 3}{2} \approx 1.701562119
x=\frac{-\sqrt{41}-3}{2}\approx -4.701562119
Graph
Share
Copied to clipboard
\frac{1}{2}x^{2}+\frac{3}{2}x=4
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\frac{1}{2}x^{2}+\frac{3}{2}x-4=4-4
Subtract 4 from both sides of the equation.
\frac{1}{2}x^{2}+\frac{3}{2}x-4=0
Subtracting 4 from itself leaves 0.
x=\frac{-\frac{3}{2}±\sqrt{\left(\frac{3}{2}\right)^{2}-4\times \frac{1}{2}\left(-4\right)}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, \frac{3}{2} for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}-4\times \frac{1}{2}\left(-4\right)}}{2\times \frac{1}{2}}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}-2\left(-4\right)}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}+8}}{2\times \frac{1}{2}}
Multiply -2 times -4.
x=\frac{-\frac{3}{2}±\sqrt{\frac{41}{4}}}{2\times \frac{1}{2}}
Add \frac{9}{4} to 8.
x=\frac{-\frac{3}{2}±\frac{\sqrt{41}}{2}}{2\times \frac{1}{2}}
Take the square root of \frac{41}{4}.
x=\frac{-\frac{3}{2}±\frac{\sqrt{41}}{2}}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{\sqrt{41}-3}{2}
Now solve the equation x=\frac{-\frac{3}{2}±\frac{\sqrt{41}}{2}}{1} when ± is plus. Add -\frac{3}{2} to \frac{\sqrt{41}}{2}.
x=\frac{-\sqrt{41}-3}{2}
Now solve the equation x=\frac{-\frac{3}{2}±\frac{\sqrt{41}}{2}}{1} when ± is minus. Subtract \frac{\sqrt{41}}{2} from -\frac{3}{2}.
x=\frac{\sqrt{41}-3}{2} x=\frac{-\sqrt{41}-3}{2}
The equation is now solved.
\frac{1}{2}x^{2}+\frac{3}{2}x=4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{1}{2}x^{2}+\frac{3}{2}x}{\frac{1}{2}}=\frac{4}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\frac{\frac{3}{2}}{\frac{1}{2}}x=\frac{4}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}+3x=\frac{4}{\frac{1}{2}}
Divide \frac{3}{2} by \frac{1}{2} by multiplying \frac{3}{2} by the reciprocal of \frac{1}{2}.
x^{2}+3x=8
Divide 4 by \frac{1}{2} by multiplying 4 by the reciprocal of \frac{1}{2}.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=8+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=8+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=\frac{41}{4}
Add 8 to \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{41}{4}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{41}{4}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{\sqrt{41}}{2} x+\frac{3}{2}=-\frac{\sqrt{41}}{2}
Simplify.
x=\frac{\sqrt{41}-3}{2} x=\frac{-\sqrt{41}-3}{2}
Subtract \frac{3}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}