Solve for x
x=-\frac{1}{2}=-0.5
Graph
Share
Copied to clipboard
-x^{2}+\left(x+1\right)\times 2=-\left(x-1\right)\left(x+1\right)
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right), the least common multiple of 1-x^{2},x-1.
-x^{2}+2x+2=-\left(x-1\right)\left(x+1\right)
Use the distributive property to multiply x+1 by 2.
-x^{2}+2x+2=\left(-x+1\right)\left(x+1\right)
Use the distributive property to multiply -1 by x-1.
-x^{2}+2x+2=-x^{2}+1
Use the distributive property to multiply -x+1 by x+1 and combine like terms.
-x^{2}+2x+2+x^{2}=1
Add x^{2} to both sides.
2x+2=1
Combine -x^{2} and x^{2} to get 0.
2x=1-2
Subtract 2 from both sides.
2x=-1
Subtract 2 from 1 to get -1.
x=\frac{-1}{2}
Divide both sides by 2.
x=-\frac{1}{2}
Fraction \frac{-1}{2} can be rewritten as -\frac{1}{2} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}