Solve for x
x = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
Graph
Share
Copied to clipboard
x^{2}=\left(x-10\right)\left(x-2\right)
Variable x cannot be equal to any of the values 2,10 since division by zero is not defined. Multiply both sides of the equation by \left(x-10\right)\left(x-2\right).
x^{2}=x^{2}-12x+20
Use the distributive property to multiply x-10 by x-2 and combine like terms.
x^{2}-x^{2}=-12x+20
Subtract x^{2} from both sides.
0=-12x+20
Combine x^{2} and -x^{2} to get 0.
-12x+20=0
Swap sides so that all variable terms are on the left hand side.
-12x=-20
Subtract 20 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-20}{-12}
Divide both sides by -12.
x=\frac{5}{3}
Reduce the fraction \frac{-20}{-12} to lowest terms by extracting and canceling out -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}