Solve for y
y=-x^{2}+3x-z
Solve for x
x=\frac{\sqrt{9-4z-4y}+3}{2}
x=\frac{-\sqrt{9-4z-4y}+3}{2}\text{, }z\leq \frac{9}{4}-y
Share
Copied to clipboard
\frac{1}{3}x^{2}+\frac{1}{3}z+\frac{1}{3}y=x
Divide each term of x^{2}+z+y by 3 to get \frac{1}{3}x^{2}+\frac{1}{3}z+\frac{1}{3}y.
\frac{1}{3}z+\frac{1}{3}y=x-\frac{1}{3}x^{2}
Subtract \frac{1}{3}x^{2} from both sides.
\frac{1}{3}y=x-\frac{1}{3}x^{2}-\frac{1}{3}z
Subtract \frac{1}{3}z from both sides.
\frac{1}{3}y=-\frac{x^{2}}{3}-\frac{z}{3}+x
The equation is in standard form.
\frac{\frac{1}{3}y}{\frac{1}{3}}=\frac{-\frac{x^{2}}{3}-\frac{z}{3}+x}{\frac{1}{3}}
Multiply both sides by 3.
y=\frac{-\frac{x^{2}}{3}-\frac{z}{3}+x}{\frac{1}{3}}
Dividing by \frac{1}{3} undoes the multiplication by \frac{1}{3}.
y=-x^{2}+3x-z
Divide x-\frac{x^{2}}{3}-\frac{z}{3} by \frac{1}{3} by multiplying x-\frac{x^{2}}{3}-\frac{z}{3} by the reciprocal of \frac{1}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}