Skip to main content
Solve for y
Tick mark Image
Solve for x
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{3}x^{2}+\frac{1}{3}z+\frac{1}{3}y=x
Divide each term of x^{2}+z+y by 3 to get \frac{1}{3}x^{2}+\frac{1}{3}z+\frac{1}{3}y.
\frac{1}{3}z+\frac{1}{3}y=x-\frac{1}{3}x^{2}
Subtract \frac{1}{3}x^{2} from both sides.
\frac{1}{3}y=x-\frac{1}{3}x^{2}-\frac{1}{3}z
Subtract \frac{1}{3}z from both sides.
\frac{1}{3}y=-\frac{x^{2}}{3}-\frac{z}{3}+x
The equation is in standard form.
\frac{\frac{1}{3}y}{\frac{1}{3}}=\frac{-\frac{x^{2}}{3}-\frac{z}{3}+x}{\frac{1}{3}}
Multiply both sides by 3.
y=\frac{-\frac{x^{2}}{3}-\frac{z}{3}+x}{\frac{1}{3}}
Dividing by \frac{1}{3} undoes the multiplication by \frac{1}{3}.
y=-x^{2}+3x-z
Divide x-\frac{x^{2}}{3}-\frac{z}{3} by \frac{1}{3} by multiplying x-\frac{x^{2}}{3}-\frac{z}{3} by the reciprocal of \frac{1}{3}.