Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(x-1\right)\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}\times \frac{x^{2}+3x}{x^{2}-1}+\frac{2x^{2}-4x}{x^{2}+x-6}
Factor the expressions that are not already factored in \frac{x^{2}+x-2}{x^{2}+5x+6}.
\frac{x-1}{x+3}\times \frac{x^{2}+3x}{x^{2}-1}+\frac{2x^{2}-4x}{x^{2}+x-6}
Cancel out x+2 in both numerator and denominator.
\frac{\left(x-1\right)\left(x^{2}+3x\right)}{\left(x+3\right)\left(x^{2}-1\right)}+\frac{2x^{2}-4x}{x^{2}+x-6}
Multiply \frac{x-1}{x+3} times \frac{x^{2}+3x}{x^{2}-1} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x-1\right)\left(x^{2}+3x\right)}{\left(x+3\right)\left(x^{2}-1\right)}+\frac{2x\left(x-2\right)}{\left(x-2\right)\left(x+3\right)}
Factor the expressions that are not already factored in \frac{2x^{2}-4x}{x^{2}+x-6}.
\frac{\left(x-1\right)\left(x^{2}+3x\right)}{\left(x+3\right)\left(x^{2}-1\right)}+\frac{2x}{x+3}
Cancel out x-2 in both numerator and denominator.
\frac{\left(x-1\right)\left(x^{2}+3x\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}+\frac{2x}{x+3}
Factor \left(x+3\right)\left(x^{2}-1\right).
\frac{\left(x-1\right)\left(x^{2}+3x\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}+\frac{2x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+1\right)\left(x+3\right) and x+3 is \left(x-1\right)\left(x+1\right)\left(x+3\right). Multiply \frac{2x}{x+3} times \frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.
\frac{\left(x-1\right)\left(x^{2}+3x\right)+2x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}
Since \frac{\left(x-1\right)\left(x^{2}+3x\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)} and \frac{2x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{x^{3}+3x^{2}-x^{2}-3x+2x^{3}+2x^{2}-2x^{2}-2x}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}
Do the multiplications in \left(x-1\right)\left(x^{2}+3x\right)+2x\left(x-1\right)\left(x+1\right).
\frac{3x^{3}+2x^{2}-5x}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}
Combine like terms in x^{3}+3x^{2}-x^{2}-3x+2x^{3}+2x^{2}-2x^{2}-2x.
\frac{x\left(x-1\right)\left(3x+5\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}
Factor the expressions that are not already factored in \frac{3x^{3}+2x^{2}-5x}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}.
\frac{x\left(3x+5\right)}{\left(x+1\right)\left(x+3\right)}
Cancel out x-1 in both numerator and denominator.
\frac{x\left(3x+5\right)}{x^{2}+4x+3}
Expand \left(x+1\right)\left(x+3\right).
\frac{3x^{2}+5x}{x^{2}+4x+3}
Use the distributive property to multiply x by 3x+5.
\frac{\left(x-1\right)\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}\times \frac{x^{2}+3x}{x^{2}-1}+\frac{2x^{2}-4x}{x^{2}+x-6}
Factor the expressions that are not already factored in \frac{x^{2}+x-2}{x^{2}+5x+6}.
\frac{x-1}{x+3}\times \frac{x^{2}+3x}{x^{2}-1}+\frac{2x^{2}-4x}{x^{2}+x-6}
Cancel out x+2 in both numerator and denominator.
\frac{\left(x-1\right)\left(x^{2}+3x\right)}{\left(x+3\right)\left(x^{2}-1\right)}+\frac{2x^{2}-4x}{x^{2}+x-6}
Multiply \frac{x-1}{x+3} times \frac{x^{2}+3x}{x^{2}-1} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x-1\right)\left(x^{2}+3x\right)}{\left(x+3\right)\left(x^{2}-1\right)}+\frac{2x\left(x-2\right)}{\left(x-2\right)\left(x+3\right)}
Factor the expressions that are not already factored in \frac{2x^{2}-4x}{x^{2}+x-6}.
\frac{\left(x-1\right)\left(x^{2}+3x\right)}{\left(x+3\right)\left(x^{2}-1\right)}+\frac{2x}{x+3}
Cancel out x-2 in both numerator and denominator.
\frac{\left(x-1\right)\left(x^{2}+3x\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}+\frac{2x}{x+3}
Factor \left(x+3\right)\left(x^{2}-1\right).
\frac{\left(x-1\right)\left(x^{2}+3x\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}+\frac{2x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+1\right)\left(x+3\right) and x+3 is \left(x-1\right)\left(x+1\right)\left(x+3\right). Multiply \frac{2x}{x+3} times \frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.
\frac{\left(x-1\right)\left(x^{2}+3x\right)+2x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}
Since \frac{\left(x-1\right)\left(x^{2}+3x\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)} and \frac{2x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{x^{3}+3x^{2}-x^{2}-3x+2x^{3}+2x^{2}-2x^{2}-2x}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}
Do the multiplications in \left(x-1\right)\left(x^{2}+3x\right)+2x\left(x-1\right)\left(x+1\right).
\frac{3x^{3}+2x^{2}-5x}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}
Combine like terms in x^{3}+3x^{2}-x^{2}-3x+2x^{3}+2x^{2}-2x^{2}-2x.
\frac{x\left(x-1\right)\left(3x+5\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}
Factor the expressions that are not already factored in \frac{3x^{3}+2x^{2}-5x}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}.
\frac{x\left(3x+5\right)}{\left(x+1\right)\left(x+3\right)}
Cancel out x-1 in both numerator and denominator.
\frac{x\left(3x+5\right)}{x^{2}+4x+3}
Expand \left(x+1\right)\left(x+3\right).
\frac{3x^{2}+5x}{x^{2}+4x+3}
Use the distributive property to multiply x by 3x+5.