Evaluate
\frac{x\left(3x+5\right)}{\left(x+1\right)\left(x+3\right)}
Expand
\frac{3x^{2}+5x}{\left(x+1\right)\left(x+3\right)}
Graph
Share
Copied to clipboard
\frac{\left(x-1\right)\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}\times \frac{x^{2}+3x}{x^{2}-1}+\frac{2x^{2}-4x}{x^{2}+x-6}
Factor the expressions that are not already factored in \frac{x^{2}+x-2}{x^{2}+5x+6}.
\frac{x-1}{x+3}\times \frac{x^{2}+3x}{x^{2}-1}+\frac{2x^{2}-4x}{x^{2}+x-6}
Cancel out x+2 in both numerator and denominator.
\frac{\left(x-1\right)\left(x^{2}+3x\right)}{\left(x+3\right)\left(x^{2}-1\right)}+\frac{2x^{2}-4x}{x^{2}+x-6}
Multiply \frac{x-1}{x+3} times \frac{x^{2}+3x}{x^{2}-1} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x-1\right)\left(x^{2}+3x\right)}{\left(x+3\right)\left(x^{2}-1\right)}+\frac{2x\left(x-2\right)}{\left(x-2\right)\left(x+3\right)}
Factor the expressions that are not already factored in \frac{2x^{2}-4x}{x^{2}+x-6}.
\frac{\left(x-1\right)\left(x^{2}+3x\right)}{\left(x+3\right)\left(x^{2}-1\right)}+\frac{2x}{x+3}
Cancel out x-2 in both numerator and denominator.
\frac{\left(x-1\right)\left(x^{2}+3x\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}+\frac{2x}{x+3}
Factor \left(x+3\right)\left(x^{2}-1\right).
\frac{\left(x-1\right)\left(x^{2}+3x\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}+\frac{2x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+1\right)\left(x+3\right) and x+3 is \left(x-1\right)\left(x+1\right)\left(x+3\right). Multiply \frac{2x}{x+3} times \frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.
\frac{\left(x-1\right)\left(x^{2}+3x\right)+2x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}
Since \frac{\left(x-1\right)\left(x^{2}+3x\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)} and \frac{2x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{x^{3}+3x^{2}-x^{2}-3x+2x^{3}+2x^{2}-2x^{2}-2x}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}
Do the multiplications in \left(x-1\right)\left(x^{2}+3x\right)+2x\left(x-1\right)\left(x+1\right).
\frac{3x^{3}+2x^{2}-5x}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}
Combine like terms in x^{3}+3x^{2}-x^{2}-3x+2x^{3}+2x^{2}-2x^{2}-2x.
\frac{x\left(x-1\right)\left(3x+5\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}
Factor the expressions that are not already factored in \frac{3x^{3}+2x^{2}-5x}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}.
\frac{x\left(3x+5\right)}{\left(x+1\right)\left(x+3\right)}
Cancel out x-1 in both numerator and denominator.
\frac{x\left(3x+5\right)}{x^{2}+4x+3}
Expand \left(x+1\right)\left(x+3\right).
\frac{3x^{2}+5x}{x^{2}+4x+3}
Use the distributive property to multiply x by 3x+5.
\frac{\left(x-1\right)\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}\times \frac{x^{2}+3x}{x^{2}-1}+\frac{2x^{2}-4x}{x^{2}+x-6}
Factor the expressions that are not already factored in \frac{x^{2}+x-2}{x^{2}+5x+6}.
\frac{x-1}{x+3}\times \frac{x^{2}+3x}{x^{2}-1}+\frac{2x^{2}-4x}{x^{2}+x-6}
Cancel out x+2 in both numerator and denominator.
\frac{\left(x-1\right)\left(x^{2}+3x\right)}{\left(x+3\right)\left(x^{2}-1\right)}+\frac{2x^{2}-4x}{x^{2}+x-6}
Multiply \frac{x-1}{x+3} times \frac{x^{2}+3x}{x^{2}-1} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x-1\right)\left(x^{2}+3x\right)}{\left(x+3\right)\left(x^{2}-1\right)}+\frac{2x\left(x-2\right)}{\left(x-2\right)\left(x+3\right)}
Factor the expressions that are not already factored in \frac{2x^{2}-4x}{x^{2}+x-6}.
\frac{\left(x-1\right)\left(x^{2}+3x\right)}{\left(x+3\right)\left(x^{2}-1\right)}+\frac{2x}{x+3}
Cancel out x-2 in both numerator and denominator.
\frac{\left(x-1\right)\left(x^{2}+3x\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}+\frac{2x}{x+3}
Factor \left(x+3\right)\left(x^{2}-1\right).
\frac{\left(x-1\right)\left(x^{2}+3x\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}+\frac{2x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+1\right)\left(x+3\right) and x+3 is \left(x-1\right)\left(x+1\right)\left(x+3\right). Multiply \frac{2x}{x+3} times \frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.
\frac{\left(x-1\right)\left(x^{2}+3x\right)+2x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}
Since \frac{\left(x-1\right)\left(x^{2}+3x\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)} and \frac{2x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{x^{3}+3x^{2}-x^{2}-3x+2x^{3}+2x^{2}-2x^{2}-2x}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}
Do the multiplications in \left(x-1\right)\left(x^{2}+3x\right)+2x\left(x-1\right)\left(x+1\right).
\frac{3x^{3}+2x^{2}-5x}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}
Combine like terms in x^{3}+3x^{2}-x^{2}-3x+2x^{3}+2x^{2}-2x^{2}-2x.
\frac{x\left(x-1\right)\left(3x+5\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}
Factor the expressions that are not already factored in \frac{3x^{3}+2x^{2}-5x}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}.
\frac{x\left(3x+5\right)}{\left(x+1\right)\left(x+3\right)}
Cancel out x-1 in both numerator and denominator.
\frac{x\left(3x+5\right)}{x^{2}+4x+3}
Expand \left(x+1\right)\left(x+3\right).
\frac{3x^{2}+5x}{x^{2}+4x+3}
Use the distributive property to multiply x by 3x+5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}