Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x\left(x+9\right)}{x\left(x-3\right)}+\frac{x^{2}-9}{x^{2}+6x+9}
Factor the expressions that are not already factored in \frac{x^{2}+9x}{x^{2}-3x}.
\frac{x+9}{x-3}+\frac{x^{2}-9}{x^{2}+6x+9}
Cancel out x in both numerator and denominator.
\frac{x+9}{x-3}+\frac{\left(x-3\right)\left(x+3\right)}{\left(x+3\right)^{2}}
Factor the expressions that are not already factored in \frac{x^{2}-9}{x^{2}+6x+9}.
\frac{x+9}{x-3}+\frac{x-3}{x+3}
Cancel out x+3 in both numerator and denominator.
\frac{\left(x+9\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-3 and x+3 is \left(x-3\right)\left(x+3\right). Multiply \frac{x+9}{x-3} times \frac{x+3}{x+3}. Multiply \frac{x-3}{x+3} times \frac{x-3}{x-3}.
\frac{\left(x+9\right)\left(x+3\right)+\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}
Since \frac{\left(x+9\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)} and \frac{\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}+3x+9x+27+x^{2}-3x-3x+9}{\left(x-3\right)\left(x+3\right)}
Do the multiplications in \left(x+9\right)\left(x+3\right)+\left(x-3\right)\left(x-3\right).
\frac{2x^{2}+6x+36}{\left(x-3\right)\left(x+3\right)}
Combine like terms in x^{2}+3x+9x+27+x^{2}-3x-3x+9.
\frac{2x^{2}+6x+36}{x^{2}-9}
Expand \left(x-3\right)\left(x+3\right).
\frac{x\left(x+9\right)}{x\left(x-3\right)}+\frac{x^{2}-9}{x^{2}+6x+9}
Factor the expressions that are not already factored in \frac{x^{2}+9x}{x^{2}-3x}.
\frac{x+9}{x-3}+\frac{x^{2}-9}{x^{2}+6x+9}
Cancel out x in both numerator and denominator.
\frac{x+9}{x-3}+\frac{\left(x-3\right)\left(x+3\right)}{\left(x+3\right)^{2}}
Factor the expressions that are not already factored in \frac{x^{2}-9}{x^{2}+6x+9}.
\frac{x+9}{x-3}+\frac{x-3}{x+3}
Cancel out x+3 in both numerator and denominator.
\frac{\left(x+9\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-3 and x+3 is \left(x-3\right)\left(x+3\right). Multiply \frac{x+9}{x-3} times \frac{x+3}{x+3}. Multiply \frac{x-3}{x+3} times \frac{x-3}{x-3}.
\frac{\left(x+9\right)\left(x+3\right)+\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}
Since \frac{\left(x+9\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)} and \frac{\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}+3x+9x+27+x^{2}-3x-3x+9}{\left(x-3\right)\left(x+3\right)}
Do the multiplications in \left(x+9\right)\left(x+3\right)+\left(x-3\right)\left(x-3\right).
\frac{2x^{2}+6x+36}{\left(x-3\right)\left(x+3\right)}
Combine like terms in x^{2}+3x+9x+27+x^{2}-3x-3x+9.
\frac{2x^{2}+6x+36}{x^{2}-9}
Expand \left(x-3\right)\left(x+3\right).