Evaluate
\frac{x^{2}+6}{x\left(x+3\right)^{2}}
Expand
\frac{x^{2}+6}{x\left(x+3\right)^{2}}
Graph
Share
Copied to clipboard
\frac{\frac{x^{2}+9}{x^{2}-9}\times \frac{2\left(x+3\right)}{\left(x+3\right)^{2}}}{\frac{2x^{2}+18}{x^{2}-5x+6}}+\frac{2}{x^{2}+3x}
Factor the expressions that are not already factored in \frac{2x+6}{x^{2}+6x+9}.
\frac{\frac{x^{2}+9}{x^{2}-9}\times \frac{2}{x+3}}{\frac{2x^{2}+18}{x^{2}-5x+6}}+\frac{2}{x^{2}+3x}
Cancel out x+3 in both numerator and denominator.
\frac{\frac{\left(x^{2}+9\right)\times 2}{\left(x^{2}-9\right)\left(x+3\right)}}{\frac{2x^{2}+18}{x^{2}-5x+6}}+\frac{2}{x^{2}+3x}
Multiply \frac{x^{2}+9}{x^{2}-9} times \frac{2}{x+3} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x^{2}+9\right)\times 2\left(x^{2}-5x+6\right)}{\left(x^{2}-9\right)\left(x+3\right)\left(2x^{2}+18\right)}+\frac{2}{x^{2}+3x}
Divide \frac{\left(x^{2}+9\right)\times 2}{\left(x^{2}-9\right)\left(x+3\right)} by \frac{2x^{2}+18}{x^{2}-5x+6} by multiplying \frac{\left(x^{2}+9\right)\times 2}{\left(x^{2}-9\right)\left(x+3\right)} by the reciprocal of \frac{2x^{2}+18}{x^{2}-5x+6}.
\frac{2\left(x-3\right)\left(x-2\right)\left(x^{2}+9\right)}{2\left(x-3\right)\left(x+3\right)^{2}\left(x^{2}+9\right)}+\frac{2}{x^{2}+3x}
Factor the expressions that are not already factored in \frac{\left(x^{2}+9\right)\times 2\left(x^{2}-5x+6\right)}{\left(x^{2}-9\right)\left(x+3\right)\left(2x^{2}+18\right)}.
\frac{x-2}{\left(x+3\right)^{2}}+\frac{2}{x^{2}+3x}
Cancel out 2\left(x-3\right)\left(x^{2}+9\right) in both numerator and denominator.
\frac{x-2}{\left(x+3\right)^{2}}+\frac{2}{x\left(x+3\right)}
Factor x^{2}+3x.
\frac{\left(x-2\right)x}{x\left(x+3\right)^{2}}+\frac{2\left(x+3\right)}{x\left(x+3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+3\right)^{2} and x\left(x+3\right) is x\left(x+3\right)^{2}. Multiply \frac{x-2}{\left(x+3\right)^{2}} times \frac{x}{x}. Multiply \frac{2}{x\left(x+3\right)} times \frac{x+3}{x+3}.
\frac{\left(x-2\right)x+2\left(x+3\right)}{x\left(x+3\right)^{2}}
Since \frac{\left(x-2\right)x}{x\left(x+3\right)^{2}} and \frac{2\left(x+3\right)}{x\left(x+3\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{2}-2x+2x+6}{x\left(x+3\right)^{2}}
Do the multiplications in \left(x-2\right)x+2\left(x+3\right).
\frac{x^{2}+6}{x\left(x+3\right)^{2}}
Combine like terms in x^{2}-2x+2x+6.
\frac{x^{2}+6}{x^{3}+6x^{2}+9x}
Expand x\left(x+3\right)^{2}.
\frac{\frac{x^{2}+9}{x^{2}-9}\times \frac{2\left(x+3\right)}{\left(x+3\right)^{2}}}{\frac{2x^{2}+18}{x^{2}-5x+6}}+\frac{2}{x^{2}+3x}
Factor the expressions that are not already factored in \frac{2x+6}{x^{2}+6x+9}.
\frac{\frac{x^{2}+9}{x^{2}-9}\times \frac{2}{x+3}}{\frac{2x^{2}+18}{x^{2}-5x+6}}+\frac{2}{x^{2}+3x}
Cancel out x+3 in both numerator and denominator.
\frac{\frac{\left(x^{2}+9\right)\times 2}{\left(x^{2}-9\right)\left(x+3\right)}}{\frac{2x^{2}+18}{x^{2}-5x+6}}+\frac{2}{x^{2}+3x}
Multiply \frac{x^{2}+9}{x^{2}-9} times \frac{2}{x+3} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x^{2}+9\right)\times 2\left(x^{2}-5x+6\right)}{\left(x^{2}-9\right)\left(x+3\right)\left(2x^{2}+18\right)}+\frac{2}{x^{2}+3x}
Divide \frac{\left(x^{2}+9\right)\times 2}{\left(x^{2}-9\right)\left(x+3\right)} by \frac{2x^{2}+18}{x^{2}-5x+6} by multiplying \frac{\left(x^{2}+9\right)\times 2}{\left(x^{2}-9\right)\left(x+3\right)} by the reciprocal of \frac{2x^{2}+18}{x^{2}-5x+6}.
\frac{2\left(x-3\right)\left(x-2\right)\left(x^{2}+9\right)}{2\left(x-3\right)\left(x+3\right)^{2}\left(x^{2}+9\right)}+\frac{2}{x^{2}+3x}
Factor the expressions that are not already factored in \frac{\left(x^{2}+9\right)\times 2\left(x^{2}-5x+6\right)}{\left(x^{2}-9\right)\left(x+3\right)\left(2x^{2}+18\right)}.
\frac{x-2}{\left(x+3\right)^{2}}+\frac{2}{x^{2}+3x}
Cancel out 2\left(x-3\right)\left(x^{2}+9\right) in both numerator and denominator.
\frac{x-2}{\left(x+3\right)^{2}}+\frac{2}{x\left(x+3\right)}
Factor x^{2}+3x.
\frac{\left(x-2\right)x}{x\left(x+3\right)^{2}}+\frac{2\left(x+3\right)}{x\left(x+3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+3\right)^{2} and x\left(x+3\right) is x\left(x+3\right)^{2}. Multiply \frac{x-2}{\left(x+3\right)^{2}} times \frac{x}{x}. Multiply \frac{2}{x\left(x+3\right)} times \frac{x+3}{x+3}.
\frac{\left(x-2\right)x+2\left(x+3\right)}{x\left(x+3\right)^{2}}
Since \frac{\left(x-2\right)x}{x\left(x+3\right)^{2}} and \frac{2\left(x+3\right)}{x\left(x+3\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{2}-2x+2x+6}{x\left(x+3\right)^{2}}
Do the multiplications in \left(x-2\right)x+2\left(x+3\right).
\frac{x^{2}+6}{x\left(x+3\right)^{2}}
Combine like terms in x^{2}-2x+2x+6.
\frac{x^{2}+6}{x^{3}+6x^{2}+9x}
Expand x\left(x+3\right)^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}