Solve for x
x=5
x=6
Graph
Share
Copied to clipboard
2\left(x^{2}+9\right)-\left(2x+12\right)\times 3+\left(2x-6\right)\times 27=5\left(x-3\right)\left(x+6\right)
Variable x cannot be equal to any of the values -6,3 since division by zero is not defined. Multiply both sides of the equation by 2\left(x-3\right)\left(x+6\right), the least common multiple of x^{2}+3x-18,x-3,x+6,2.
2x^{2}+18-\left(2x+12\right)\times 3+\left(2x-6\right)\times 27=5\left(x-3\right)\left(x+6\right)
Use the distributive property to multiply 2 by x^{2}+9.
2x^{2}+18-\left(6x+36\right)+\left(2x-6\right)\times 27=5\left(x-3\right)\left(x+6\right)
Use the distributive property to multiply 2x+12 by 3.
2x^{2}+18-6x-36+\left(2x-6\right)\times 27=5\left(x-3\right)\left(x+6\right)
To find the opposite of 6x+36, find the opposite of each term.
2x^{2}-18-6x+\left(2x-6\right)\times 27=5\left(x-3\right)\left(x+6\right)
Subtract 36 from 18 to get -18.
2x^{2}-18-6x+54x-162=5\left(x-3\right)\left(x+6\right)
Use the distributive property to multiply 2x-6 by 27.
2x^{2}-18+48x-162=5\left(x-3\right)\left(x+6\right)
Combine -6x and 54x to get 48x.
2x^{2}-180+48x=5\left(x-3\right)\left(x+6\right)
Subtract 162 from -18 to get -180.
2x^{2}-180+48x=\left(5x-15\right)\left(x+6\right)
Use the distributive property to multiply 5 by x-3.
2x^{2}-180+48x=5x^{2}+15x-90
Use the distributive property to multiply 5x-15 by x+6 and combine like terms.
2x^{2}-180+48x-5x^{2}=15x-90
Subtract 5x^{2} from both sides.
-3x^{2}-180+48x=15x-90
Combine 2x^{2} and -5x^{2} to get -3x^{2}.
-3x^{2}-180+48x-15x=-90
Subtract 15x from both sides.
-3x^{2}-180+33x=-90
Combine 48x and -15x to get 33x.
-3x^{2}-180+33x+90=0
Add 90 to both sides.
-3x^{2}-90+33x=0
Add -180 and 90 to get -90.
-x^{2}-30+11x=0
Divide both sides by 3.
-x^{2}+11x-30=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=11 ab=-\left(-30\right)=30
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-30. To find a and b, set up a system to be solved.
1,30 2,15 3,10 5,6
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 30.
1+30=31 2+15=17 3+10=13 5+6=11
Calculate the sum for each pair.
a=6 b=5
The solution is the pair that gives sum 11.
\left(-x^{2}+6x\right)+\left(5x-30\right)
Rewrite -x^{2}+11x-30 as \left(-x^{2}+6x\right)+\left(5x-30\right).
-x\left(x-6\right)+5\left(x-6\right)
Factor out -x in the first and 5 in the second group.
\left(x-6\right)\left(-x+5\right)
Factor out common term x-6 by using distributive property.
x=6 x=5
To find equation solutions, solve x-6=0 and -x+5=0.
2\left(x^{2}+9\right)-\left(2x+12\right)\times 3+\left(2x-6\right)\times 27=5\left(x-3\right)\left(x+6\right)
Variable x cannot be equal to any of the values -6,3 since division by zero is not defined. Multiply both sides of the equation by 2\left(x-3\right)\left(x+6\right), the least common multiple of x^{2}+3x-18,x-3,x+6,2.
2x^{2}+18-\left(2x+12\right)\times 3+\left(2x-6\right)\times 27=5\left(x-3\right)\left(x+6\right)
Use the distributive property to multiply 2 by x^{2}+9.
2x^{2}+18-\left(6x+36\right)+\left(2x-6\right)\times 27=5\left(x-3\right)\left(x+6\right)
Use the distributive property to multiply 2x+12 by 3.
2x^{2}+18-6x-36+\left(2x-6\right)\times 27=5\left(x-3\right)\left(x+6\right)
To find the opposite of 6x+36, find the opposite of each term.
2x^{2}-18-6x+\left(2x-6\right)\times 27=5\left(x-3\right)\left(x+6\right)
Subtract 36 from 18 to get -18.
2x^{2}-18-6x+54x-162=5\left(x-3\right)\left(x+6\right)
Use the distributive property to multiply 2x-6 by 27.
2x^{2}-18+48x-162=5\left(x-3\right)\left(x+6\right)
Combine -6x and 54x to get 48x.
2x^{2}-180+48x=5\left(x-3\right)\left(x+6\right)
Subtract 162 from -18 to get -180.
2x^{2}-180+48x=\left(5x-15\right)\left(x+6\right)
Use the distributive property to multiply 5 by x-3.
2x^{2}-180+48x=5x^{2}+15x-90
Use the distributive property to multiply 5x-15 by x+6 and combine like terms.
2x^{2}-180+48x-5x^{2}=15x-90
Subtract 5x^{2} from both sides.
-3x^{2}-180+48x=15x-90
Combine 2x^{2} and -5x^{2} to get -3x^{2}.
-3x^{2}-180+48x-15x=-90
Subtract 15x from both sides.
-3x^{2}-180+33x=-90
Combine 48x and -15x to get 33x.
-3x^{2}-180+33x+90=0
Add 90 to both sides.
-3x^{2}-90+33x=0
Add -180 and 90 to get -90.
-3x^{2}+33x-90=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-33±\sqrt{33^{2}-4\left(-3\right)\left(-90\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 33 for b, and -90 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-33±\sqrt{1089-4\left(-3\right)\left(-90\right)}}{2\left(-3\right)}
Square 33.
x=\frac{-33±\sqrt{1089+12\left(-90\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-33±\sqrt{1089-1080}}{2\left(-3\right)}
Multiply 12 times -90.
x=\frac{-33±\sqrt{9}}{2\left(-3\right)}
Add 1089 to -1080.
x=\frac{-33±3}{2\left(-3\right)}
Take the square root of 9.
x=\frac{-33±3}{-6}
Multiply 2 times -3.
x=-\frac{30}{-6}
Now solve the equation x=\frac{-33±3}{-6} when ± is plus. Add -33 to 3.
x=5
Divide -30 by -6.
x=-\frac{36}{-6}
Now solve the equation x=\frac{-33±3}{-6} when ± is minus. Subtract 3 from -33.
x=6
Divide -36 by -6.
x=5 x=6
The equation is now solved.
2\left(x^{2}+9\right)-\left(2x+12\right)\times 3+\left(2x-6\right)\times 27=5\left(x-3\right)\left(x+6\right)
Variable x cannot be equal to any of the values -6,3 since division by zero is not defined. Multiply both sides of the equation by 2\left(x-3\right)\left(x+6\right), the least common multiple of x^{2}+3x-18,x-3,x+6,2.
2x^{2}+18-\left(2x+12\right)\times 3+\left(2x-6\right)\times 27=5\left(x-3\right)\left(x+6\right)
Use the distributive property to multiply 2 by x^{2}+9.
2x^{2}+18-\left(6x+36\right)+\left(2x-6\right)\times 27=5\left(x-3\right)\left(x+6\right)
Use the distributive property to multiply 2x+12 by 3.
2x^{2}+18-6x-36+\left(2x-6\right)\times 27=5\left(x-3\right)\left(x+6\right)
To find the opposite of 6x+36, find the opposite of each term.
2x^{2}-18-6x+\left(2x-6\right)\times 27=5\left(x-3\right)\left(x+6\right)
Subtract 36 from 18 to get -18.
2x^{2}-18-6x+54x-162=5\left(x-3\right)\left(x+6\right)
Use the distributive property to multiply 2x-6 by 27.
2x^{2}-18+48x-162=5\left(x-3\right)\left(x+6\right)
Combine -6x and 54x to get 48x.
2x^{2}-180+48x=5\left(x-3\right)\left(x+6\right)
Subtract 162 from -18 to get -180.
2x^{2}-180+48x=\left(5x-15\right)\left(x+6\right)
Use the distributive property to multiply 5 by x-3.
2x^{2}-180+48x=5x^{2}+15x-90
Use the distributive property to multiply 5x-15 by x+6 and combine like terms.
2x^{2}-180+48x-5x^{2}=15x-90
Subtract 5x^{2} from both sides.
-3x^{2}-180+48x=15x-90
Combine 2x^{2} and -5x^{2} to get -3x^{2}.
-3x^{2}-180+48x-15x=-90
Subtract 15x from both sides.
-3x^{2}-180+33x=-90
Combine 48x and -15x to get 33x.
-3x^{2}+33x=-90+180
Add 180 to both sides.
-3x^{2}+33x=90
Add -90 and 180 to get 90.
\frac{-3x^{2}+33x}{-3}=\frac{90}{-3}
Divide both sides by -3.
x^{2}+\frac{33}{-3}x=\frac{90}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-11x=\frac{90}{-3}
Divide 33 by -3.
x^{2}-11x=-30
Divide 90 by -3.
x^{2}-11x+\left(-\frac{11}{2}\right)^{2}=-30+\left(-\frac{11}{2}\right)^{2}
Divide -11, the coefficient of the x term, by 2 to get -\frac{11}{2}. Then add the square of -\frac{11}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-11x+\frac{121}{4}=-30+\frac{121}{4}
Square -\frac{11}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-11x+\frac{121}{4}=\frac{1}{4}
Add -30 to \frac{121}{4}.
\left(x-\frac{11}{2}\right)^{2}=\frac{1}{4}
Factor x^{2}-11x+\frac{121}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
x-\frac{11}{2}=\frac{1}{2} x-\frac{11}{2}=-\frac{1}{2}
Simplify.
x=6 x=5
Add \frac{11}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}