Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x^{2}+8}{\left(x-2\right)\left(x+2\right)}+\frac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2x}{x-2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+2\right)\left(x-2\right) and x+2 is \left(x-2\right)\left(x+2\right). Multiply \frac{x}{x+2} times \frac{x-2}{x-2}.
\frac{x^{2}+8+x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2x}{x-2}
Since \frac{x^{2}+8}{\left(x-2\right)\left(x+2\right)} and \frac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}+8+x^{2}-2x}{\left(x-2\right)\left(x+2\right)}-\frac{2x}{x-2}
Do the multiplications in x^{2}+8+x\left(x-2\right).
\frac{2x^{2}+8-2x}{\left(x-2\right)\left(x+2\right)}-\frac{2x}{x-2}
Combine like terms in x^{2}+8+x^{2}-2x.
\frac{2x^{2}+8-2x}{\left(x-2\right)\left(x+2\right)}-\frac{2x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+2\right) and x-2 is \left(x-2\right)\left(x+2\right). Multiply \frac{2x}{x-2} times \frac{x+2}{x+2}.
\frac{2x^{2}+8-2x-2x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}
Since \frac{2x^{2}+8-2x}{\left(x-2\right)\left(x+2\right)} and \frac{2x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{2}+8-2x-2x^{2}-4x}{\left(x-2\right)\left(x+2\right)}
Do the multiplications in 2x^{2}+8-2x-2x\left(x+2\right).
\frac{8-6x}{\left(x-2\right)\left(x+2\right)}
Combine like terms in 2x^{2}+8-2x-2x^{2}-4x.
\frac{8-6x}{x^{2}-4}
Expand \left(x-2\right)\left(x+2\right).
\frac{x^{2}+8}{\left(x-2\right)\left(x+2\right)}+\frac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2x}{x-2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+2\right)\left(x-2\right) and x+2 is \left(x-2\right)\left(x+2\right). Multiply \frac{x}{x+2} times \frac{x-2}{x-2}.
\frac{x^{2}+8+x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2x}{x-2}
Since \frac{x^{2}+8}{\left(x-2\right)\left(x+2\right)} and \frac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}+8+x^{2}-2x}{\left(x-2\right)\left(x+2\right)}-\frac{2x}{x-2}
Do the multiplications in x^{2}+8+x\left(x-2\right).
\frac{2x^{2}+8-2x}{\left(x-2\right)\left(x+2\right)}-\frac{2x}{x-2}
Combine like terms in x^{2}+8+x^{2}-2x.
\frac{2x^{2}+8-2x}{\left(x-2\right)\left(x+2\right)}-\frac{2x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+2\right) and x-2 is \left(x-2\right)\left(x+2\right). Multiply \frac{2x}{x-2} times \frac{x+2}{x+2}.
\frac{2x^{2}+8-2x-2x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}
Since \frac{2x^{2}+8-2x}{\left(x-2\right)\left(x+2\right)} and \frac{2x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{2}+8-2x-2x^{2}-4x}{\left(x-2\right)\left(x+2\right)}
Do the multiplications in 2x^{2}+8-2x-2x\left(x+2\right).
\frac{8-6x}{\left(x-2\right)\left(x+2\right)}
Combine like terms in 2x^{2}+8-2x-2x^{2}-4x.
\frac{8-6x}{x^{2}-4}
Expand \left(x-2\right)\left(x+2\right).