Solve for y (complex solution)
y=\frac{44}{x^{2}+6}
x\neq -\sqrt{6}i\text{ and }x\neq \sqrt{6}i
Solve for y
y=\frac{44}{x^{2}+6}
Solve for x (complex solution)
x=-\sqrt{-6+\frac{44}{y}}
x=\sqrt{-6+\frac{44}{y}}\text{, }y\neq 0
Solve for x
x=\sqrt{-6+\frac{44}{y}}
x=-\sqrt{-6+\frac{44}{y}}\text{, }y>0\text{ and }y\leq \frac{22}{3}
Graph
Share
Copied to clipboard
\frac{1}{4}y\left(x^{2}+6\right)=9+2
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
\frac{1}{4}yx^{2}+\frac{3}{2}y=9+2
Use the distributive property to multiply \frac{1}{4}y by x^{2}+6.
\frac{1}{4}yx^{2}+\frac{3}{2}y=11
Add 9 and 2 to get 11.
\left(\frac{1}{4}x^{2}+\frac{3}{2}\right)y=11
Combine all terms containing y.
\left(\frac{x^{2}}{4}+\frac{3}{2}\right)y=11
The equation is in standard form.
\frac{\left(\frac{x^{2}}{4}+\frac{3}{2}\right)y}{\frac{x^{2}}{4}+\frac{3}{2}}=\frac{11}{\frac{x^{2}}{4}+\frac{3}{2}}
Divide both sides by \frac{1}{4}x^{2}+\frac{3}{2}.
y=\frac{11}{\frac{x^{2}}{4}+\frac{3}{2}}
Dividing by \frac{1}{4}x^{2}+\frac{3}{2} undoes the multiplication by \frac{1}{4}x^{2}+\frac{3}{2}.
y=\frac{44}{x^{2}+6}
Divide 11 by \frac{1}{4}x^{2}+\frac{3}{2}.
y=\frac{44}{x^{2}+6}\text{, }y\neq 0
Variable y cannot be equal to 0.
\frac{1}{4}y\left(x^{2}+6\right)=9+2
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
\frac{1}{4}yx^{2}+\frac{3}{2}y=9+2
Use the distributive property to multiply \frac{1}{4}y by x^{2}+6.
\frac{1}{4}yx^{2}+\frac{3}{2}y=11
Add 9 and 2 to get 11.
\left(\frac{1}{4}x^{2}+\frac{3}{2}\right)y=11
Combine all terms containing y.
\left(\frac{x^{2}}{4}+\frac{3}{2}\right)y=11
The equation is in standard form.
\frac{\left(\frac{x^{2}}{4}+\frac{3}{2}\right)y}{\frac{x^{2}}{4}+\frac{3}{2}}=\frac{11}{\frac{x^{2}}{4}+\frac{3}{2}}
Divide both sides by \frac{1}{4}x^{2}+\frac{3}{2}.
y=\frac{11}{\frac{x^{2}}{4}+\frac{3}{2}}
Dividing by \frac{1}{4}x^{2}+\frac{3}{2} undoes the multiplication by \frac{1}{4}x^{2}+\frac{3}{2}.
y=\frac{44}{x^{2}+6}
Divide 11 by \frac{1}{4}x^{2}+\frac{3}{2}.
y=\frac{44}{x^{2}+6}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}