Solve for x
x=-15
x=1
Graph
Share
Copied to clipboard
8\left(x^{2}+5x\right)-12\left(x+3\right)=3\left(2x^{2}-2\right)
Multiply both sides of the equation by 24, the least common multiple of 3,2,8.
8x^{2}+40x-12\left(x+3\right)=3\left(2x^{2}-2\right)
Use the distributive property to multiply 8 by x^{2}+5x.
8x^{2}+40x-12x-36=3\left(2x^{2}-2\right)
Use the distributive property to multiply -12 by x+3.
8x^{2}+28x-36=3\left(2x^{2}-2\right)
Combine 40x and -12x to get 28x.
8x^{2}+28x-36=6x^{2}-6
Use the distributive property to multiply 3 by 2x^{2}-2.
8x^{2}+28x-36-6x^{2}=-6
Subtract 6x^{2} from both sides.
2x^{2}+28x-36=-6
Combine 8x^{2} and -6x^{2} to get 2x^{2}.
2x^{2}+28x-36+6=0
Add 6 to both sides.
2x^{2}+28x-30=0
Add -36 and 6 to get -30.
x^{2}+14x-15=0
Divide both sides by 2.
a+b=14 ab=1\left(-15\right)=-15
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-15. To find a and b, set up a system to be solved.
-1,15 -3,5
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -15.
-1+15=14 -3+5=2
Calculate the sum for each pair.
a=-1 b=15
The solution is the pair that gives sum 14.
\left(x^{2}-x\right)+\left(15x-15\right)
Rewrite x^{2}+14x-15 as \left(x^{2}-x\right)+\left(15x-15\right).
x\left(x-1\right)+15\left(x-1\right)
Factor out x in the first and 15 in the second group.
\left(x-1\right)\left(x+15\right)
Factor out common term x-1 by using distributive property.
x=1 x=-15
To find equation solutions, solve x-1=0 and x+15=0.
8\left(x^{2}+5x\right)-12\left(x+3\right)=3\left(2x^{2}-2\right)
Multiply both sides of the equation by 24, the least common multiple of 3,2,8.
8x^{2}+40x-12\left(x+3\right)=3\left(2x^{2}-2\right)
Use the distributive property to multiply 8 by x^{2}+5x.
8x^{2}+40x-12x-36=3\left(2x^{2}-2\right)
Use the distributive property to multiply -12 by x+3.
8x^{2}+28x-36=3\left(2x^{2}-2\right)
Combine 40x and -12x to get 28x.
8x^{2}+28x-36=6x^{2}-6
Use the distributive property to multiply 3 by 2x^{2}-2.
8x^{2}+28x-36-6x^{2}=-6
Subtract 6x^{2} from both sides.
2x^{2}+28x-36=-6
Combine 8x^{2} and -6x^{2} to get 2x^{2}.
2x^{2}+28x-36+6=0
Add 6 to both sides.
2x^{2}+28x-30=0
Add -36 and 6 to get -30.
x=\frac{-28±\sqrt{28^{2}-4\times 2\left(-30\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 28 for b, and -30 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-28±\sqrt{784-4\times 2\left(-30\right)}}{2\times 2}
Square 28.
x=\frac{-28±\sqrt{784-8\left(-30\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-28±\sqrt{784+240}}{2\times 2}
Multiply -8 times -30.
x=\frac{-28±\sqrt{1024}}{2\times 2}
Add 784 to 240.
x=\frac{-28±32}{2\times 2}
Take the square root of 1024.
x=\frac{-28±32}{4}
Multiply 2 times 2.
x=\frac{4}{4}
Now solve the equation x=\frac{-28±32}{4} when ± is plus. Add -28 to 32.
x=1
Divide 4 by 4.
x=-\frac{60}{4}
Now solve the equation x=\frac{-28±32}{4} when ± is minus. Subtract 32 from -28.
x=-15
Divide -60 by 4.
x=1 x=-15
The equation is now solved.
8\left(x^{2}+5x\right)-12\left(x+3\right)=3\left(2x^{2}-2\right)
Multiply both sides of the equation by 24, the least common multiple of 3,2,8.
8x^{2}+40x-12\left(x+3\right)=3\left(2x^{2}-2\right)
Use the distributive property to multiply 8 by x^{2}+5x.
8x^{2}+40x-12x-36=3\left(2x^{2}-2\right)
Use the distributive property to multiply -12 by x+3.
8x^{2}+28x-36=3\left(2x^{2}-2\right)
Combine 40x and -12x to get 28x.
8x^{2}+28x-36=6x^{2}-6
Use the distributive property to multiply 3 by 2x^{2}-2.
8x^{2}+28x-36-6x^{2}=-6
Subtract 6x^{2} from both sides.
2x^{2}+28x-36=-6
Combine 8x^{2} and -6x^{2} to get 2x^{2}.
2x^{2}+28x=-6+36
Add 36 to both sides.
2x^{2}+28x=30
Add -6 and 36 to get 30.
\frac{2x^{2}+28x}{2}=\frac{30}{2}
Divide both sides by 2.
x^{2}+\frac{28}{2}x=\frac{30}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+14x=\frac{30}{2}
Divide 28 by 2.
x^{2}+14x=15
Divide 30 by 2.
x^{2}+14x+7^{2}=15+7^{2}
Divide 14, the coefficient of the x term, by 2 to get 7. Then add the square of 7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+14x+49=15+49
Square 7.
x^{2}+14x+49=64
Add 15 to 49.
\left(x+7\right)^{2}=64
Factor x^{2}+14x+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+7\right)^{2}}=\sqrt{64}
Take the square root of both sides of the equation.
x+7=8 x+7=-8
Simplify.
x=1 x=-15
Subtract 7 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}