Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x^{2}+4x}{\left(x+6\right)\left(x+9\right)}-\frac{4}{x+6}
Factor x^{2}+15x+54.
\frac{x^{2}+4x}{\left(x+6\right)\left(x+9\right)}-\frac{4\left(x+9\right)}{\left(x+6\right)\left(x+9\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+6\right)\left(x+9\right) and x+6 is \left(x+6\right)\left(x+9\right). Multiply \frac{4}{x+6} times \frac{x+9}{x+9}.
\frac{x^{2}+4x-4\left(x+9\right)}{\left(x+6\right)\left(x+9\right)}
Since \frac{x^{2}+4x}{\left(x+6\right)\left(x+9\right)} and \frac{4\left(x+9\right)}{\left(x+6\right)\left(x+9\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+4x-4x-36}{\left(x+6\right)\left(x+9\right)}
Do the multiplications in x^{2}+4x-4\left(x+9\right).
\frac{x^{2}-36}{\left(x+6\right)\left(x+9\right)}
Combine like terms in x^{2}+4x-4x-36.
\frac{\left(x-6\right)\left(x+6\right)}{\left(x+6\right)\left(x+9\right)}
Factor the expressions that are not already factored in \frac{x^{2}-36}{\left(x+6\right)\left(x+9\right)}.
\frac{x-6}{x+9}
Cancel out x+6 in both numerator and denominator.
\frac{x^{2}+4x}{\left(x+6\right)\left(x+9\right)}-\frac{4}{x+6}
Factor x^{2}+15x+54.
\frac{x^{2}+4x}{\left(x+6\right)\left(x+9\right)}-\frac{4\left(x+9\right)}{\left(x+6\right)\left(x+9\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+6\right)\left(x+9\right) and x+6 is \left(x+6\right)\left(x+9\right). Multiply \frac{4}{x+6} times \frac{x+9}{x+9}.
\frac{x^{2}+4x-4\left(x+9\right)}{\left(x+6\right)\left(x+9\right)}
Since \frac{x^{2}+4x}{\left(x+6\right)\left(x+9\right)} and \frac{4\left(x+9\right)}{\left(x+6\right)\left(x+9\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+4x-4x-36}{\left(x+6\right)\left(x+9\right)}
Do the multiplications in x^{2}+4x-4\left(x+9\right).
\frac{x^{2}-36}{\left(x+6\right)\left(x+9\right)}
Combine like terms in x^{2}+4x-4x-36.
\frac{\left(x-6\right)\left(x+6\right)}{\left(x+6\right)\left(x+9\right)}
Factor the expressions that are not already factored in \frac{x^{2}-36}{\left(x+6\right)\left(x+9\right)}.
\frac{x-6}{x+9}
Cancel out x+6 in both numerator and denominator.